
Some aspects of the Anderson hamiltonian with
white noise in 1D

Laure Dumaz1, joint works with Cyril Labbé2
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Motivations

RMT Wigner ’50 → repulsion between the eigenvalues.

Aldous objective method (implemented for RMT in particular by
Valkó, Virág and coauthors): take the limit of the whole random
matrix itself!

Limiting objects: Stochastic Airy Operator for the edge,
Hyperbolic carousel operators for the bulk.

→ Read statistics of eigenvalues directly on the limiting operator
(thanks to stochastic calculus).

Ultimate goal : Understand random Schrödinger operators using
the link with RMT ?
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Valkó, Virág and coauthors): take the limit of the whole random
matrix itself!

Limiting objects: Stochastic Airy Operator for the edge,
Hyperbolic carousel operators for the bulk.

→ Read statistics of eigenvalues directly on the limiting operator
(thanks to stochastic calculus).

Ultimate goal : Understand random Schrödinger operators using
the link with RMT ?



Motivations

RMT Wigner ’50 → repulsion between the eigenvalues.

Aldous objective method (implemented for RMT in particular by
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Schrödinger operator

Differential self-adjoint operator on Rd :

u 7→ −∆u + V · u .

V : potential.

Interpolation between Laplacian:

u 7→ −∆u ,

and multiplication by the potential V :

u 7→ V · u .
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Schrödinger operator

Laplacian operator:

u 7→ −∆u ,

electron conduction in a crystal.

The potential V models the impurities.

Celebrated model since Anderson (’58).

Main results/conjectures:
I d = 1: Anderson localization (result).
I d = 2: Anderson localization (conjecture).
I d = 3 and above, there is a delocalized phase if V small

enough (major conjecture!).
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1D Schrödinger operator
In this talk: d = 1, V = ξ = random potential:= white noise.

I Advantages: white noise is natural, it is explicit, and it has
nice properties.

I Inconvenient: it is irregular.

Introduce:

HL : u ∈ DL 7→ −∂2
t u + ξ · u .

where DL subdomain of L2(−L/2, L/2) with Dirichlet boundary
conditions.

And

H : u ∈ D 7→ −∂2
t u + ξ · u .

where D subdomain of L2(R).
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Anderson localization

Theorem (L.D., C. Labbé ’22+)
When L→∞, HL converges towards H in the strong resolvent
sense.

H has a pure point spectrum, its eigenfunctions decay
exponentially: for every eigenvalue λ,

1
|t| ln

√
ϕλ(t)2 + ϕ′λ(t)2 →|t|→∞ −γλ

where γλ > 0 is the Lyapunov exponent associated to the
eigenproblem.

This result was expected but there are some technical issues as
white noise is singular.
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Study of HL

Study the fine statistics of the spectrum of HL when L→∞.

Eigenvalues Eigenvectors

−L/2 L/2

Random point process on the real line Random real function on [−L/2, L/2]

E

O( 1
Ln(E))

E : energy: it may depend on the size of the system L.
n(E ): density of states
(roughly, # of eigenvalues [E ,E + ε] ' n(E )L ε)



Goal

Study the spectrum of this operator when L→∞.

Eigenvalues Eigenvectors

−L/2 L/2

Poisson point process Random real function on [−L/2, L/2] localized

E

Usually for random operators with discrete spectrum, there is a
dichotomy:

I Localization of the eigenvectors and Poisson distribution of
eigenvalues.



Goal

Study the spectrum of this operator when L→∞.

Eigenvalues Eigenvectors

−L/2 L/2

Random point process with repulsion Random real function on [−L/2, L/2] delocalized

E

Usually for random operators with discrete spectrum, there is a
dichotomy:

I Delocalization of the eigenvectors and repulsion of the
eigenvalues.



Summary of our results

I When E � L:

Eigenvalues: Poisson, Eigenvectors: localized.

I When E = O(L) or E � L:

Eigenvalues: repulsion, Eigenvectors: delocalized.



Critical Regime E = O(L)
Zoom around energies E of order L.

I Eigenvalues :
Ln(E )(λi − E ) ,

I Eigenfunctions :
Lϕ2

i (Lt)dt .

−1/2 1/2−L/2 L/2

Eigenfunction ϕi

Lϕ2
i (L t)dt
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Delocalization: Critical regime
Fix τ > 0 and let L/E → τ .

QL :=
∑
i≥1

δ(Ln(E)(λi−E),Lϕ2
i (Lt)dt),

Theorem (D., Labbé (’21))
QL converges towards a random point process, characterized by
coupled diffusions.

I Limiting eigenvalue point process = Schτ point proces
introduced by Kritchevski, Valkó and Virág (2012), in the
context of discrete random Schrödinger operators. Repulsion
between the points!

I Typical limiting eigenvectors = exponential of a Brownian
motion plus a drift around a uniform point in [−1/2, 1/2]
(conjectured for this model by Rifkind and Virág (2018)).
Interaction between the eigenvectors.



Delocalization: Critical regime
Fix τ > 0 and let L/E → τ .

QL :=
∑
i≥1

δ(Ln(E)(λi−E),Lϕ2
i (Lt)dt),

Theorem (D., Labbé (’21))
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context of discrete random Schrödinger operators.

Repulsion
between the points!

I Typical limiting eigenvectors = exponential of a Brownian
motion plus a drift around a uniform point in [−1/2, 1/2]
(conjectured for this model by Rifkind and Virág (2018)).
Interaction between the eigenvectors.



Delocalization: Critical regime
Fix τ > 0 and let L/E → τ .

QL :=
∑
i≥1

δ(Ln(E)(λi−E),Lϕ2
i (Lt)dt),

Theorem (D., Labbé (’21))
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Delocalization: Behavior of eigenvectors

−1/2 1/2

Lϕ2
i (L t)dt

U

C exp (− τ
4 |t− U | +

√
τ√
2
W (t− U))dt

−1/2 1/2

Eigenvector associated to

an energy near E
U ∼ uniform

W two-sided Brownian motion



Delocalization: Behavior of eigenvectors

U

C exp (− τ
4 |t− U | +

√
τ√
2
W (t− U))dt

−1/2 1/2

Universal shape: conjectured by Rifkind and Virág to arise in
many 1D models through their transition from localized to
delocalized.

This shape starts to appear in the localized regime when
1� E � L when we zoom around the argmax of the function!
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From localization to delocalization

Localized regime for 1� E � L: zoom around the argmax of
the function!

Ui

C exp (− 1
4 |t− Ui|+ 1√

2
W (t− Ui))dt

−L/2 L/2

O(E)



Delocalization: Critical regime
Convergence at the level of operators:

Theorem (D., Labbé (’21))
The rescaled (around E) and unitarily changed operator HL
converges towards the operator

CSτ := 2
(

0 −∂t
∂t 0

)
+
√
τ

(
dB + 1√

2 dW1
1√
2 dW2

1√
2 dW2 dB − 1√

2 dW1

)
,

where B,W1,W2 are independent Brownian motions, on
L2((0, 1),R2) with Dirichlet b.c..

I The convergence holds in law in the strong resolvent sense +
there is convergence in law of the eigenvalues/eigenvectors.

I Such a form was appearing in the works of Edelman and
Sutton (2006) as a conjecture for the bulk of limiting random
matrices.
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Delocalization: Critical regime

Some remarks:
I The limiting operator acts on R2 valued functions: The initial

space is enlarged. → transformation of HL is non trivial.

I CSτ is not properly defined in this form. An elegant way to
define it is though Dirac operators, which appeared recently in
Valkó and Virág (2016) for the limit of many random matrix
models.

I Our approach could probably be extended to other models
(bulk of tridiagonal matrices or other differential operators).
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Link with the operators of Valkó and Virág

Dirac operators: differential self-adjoint operator of the form

τR : f =
(

f1
f2

)
7→ 2 R(t)−1J∂t

(
f1
f2

)

R(t): 2×2 symmetric positive matrix of det = 1, J =
(

0 −1
1 0

)
.

Valkó and Virág (’16) proved that the spectrum of those operators
for a well-chosen random R corresponds to the spectrum of various
famous RMT (Sineβ, Besselβ etc.).
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Link with the operators of Valkó and Virág

Dirac operators:

τR : f =
(

f1
f2

)
7→ 2 R(t)−1J∂t

(
f1
f2

)

Write R = 1
det X X t X with X (t) =

(
1 −x(t)
0 y(t)

)
.

Eigenvalue equation:

τR f = λ f .

Fact: f1(t)/f2(t) ∈ R ∪ {∞} = ∂H follows hyperbolic rotation at
speed λdt around x(t) + iy(t) in H.
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Link with the operators of Valkó and Virág

Eigenvalue equation: τR f = λf .

Fact: f1(t)/f2(t) ∈ R ∪ {∞} = ∂H follows hyperbolic rotation at
speed λdt around x(t) + iy(t).

x(t) + iy(t)

f1(t)/f2(t)



Link with the operators of Valkó and Virág

Theorem (D.,Labbé, 2021)
The operator CSτ is unitarily equivalent to a Dirac operator
associated to a hyperbolic Brownian motion of variance τ/2.

Unitary map is random (non trivial).
Boundary conditions are complicated but explicit.



Some ideas for the proofs in the
localized regime



Eigenvalue equation

Eigenvalue equation for HL defined on [−L/2, L/2]:

−ϕ′′ + ξ · ϕ = λϕ

with ϕ(−L/2) = 0 (without any condition on ϕ(L/2)).

For all λ ∈ R, there is an unique solution ϕλ (up to a scaling).

The couple (λ, ϕλ) is an eigenvalue/eigenvector when

ϕλ(L/2) = 0.

To keep in mind: it is much easier to analyse the solution of the
ODE than the solution of the eigenvalue problem: λ is random and
depends on the whole potential ξ.
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Eigenvalue equation

One can also impose first ϕ̂(L/2) = 0 and solve

−ϕ̂′′ + ξ · ϕ̂ = λϕ̂

For all λ ∈ R, there is an unique solution ϕ̂λ (up to a scaling).

The couple (λ, ϕ̂λ) is an eigenvalue/eigenvector when

ϕ̂λ(−L/2) = 0.
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Concatenation forward/backward

Key idea: Use forward solution ϕλ on the time-interval [−L/2, u]
and then backward solution ϕ̂λ on [u, L/2] for some well-chosen u.
→ Concatenation is ϕ(u).

−L/2 L/2u

forward backward
ϕ(u)

I If λ eigenvalue → changes nothing.
I FACT: If λ close to an eigenvalue → close to eigenvector if

u = argmax of eigenvector.

It helps A LOT because it is much easier to analyze the forward or
backward solution of the ODE than the eigenvalue equation (when
λ eigenvalue, λ is random and depends on the whole potential ξ!).
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Localization: A key formula

Proposition (Goldsheid Molchanov Pastur formula)
For all continuous, compactly supported on the first variable, and
bounded G:

E
[ ∑
λ eigenvalue

G(λ, ϕλ)
]

=
∫
λ∈R

∫ L/2

−L/2

∫ π

0
sin2(θ)pλ(θ)pλ(π − θ)E

[
G
(
λ,

ϕ
(u)
λ

||ϕ(u)
λ ||2

)]
dλdudθ,

where
I ϕ(u) is the concatenation of the forward process and backward

process at time u.
I pλ(θ) transition probability of θλ “phase function” (argument

of ϕ′λ + iϕλ).



THANK YOU!





Strategy to prove convergence towards a Poisson point
process when you know localization

Let ∆ = [E − h/(Ln(E )),E + h/(Ln(E ))] (E fixed) and denote
N(∆) = # eigenvalues in ∆.

Divide [−L/2, L/2] into small boxes Bi , i = 1, · · · ,N of same
length.

Eigenvalues Eigenvectors

−L/2 L/2

E

∆

B1 B2
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Strategy to prove convergence towards a Poisson point
process when you know localization

Let ∆ = [E − h/(Ln(E )),E + h/(Ln(E ))] (E fixed or E � L) and
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(A) N(∆) '
∑

i Ni (∆) where Ni (∆) is the number of eigenvalues
in ∆ of HBi := (−d2/dx2 + B′(x))|Bi .

(B) E[N(∆)] ∼ 2h.
(C)

∑
i P[Ni (∆) ≥ 2]→ 0.
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