Some aspects of the Anderson hamiltonian with white noise in 1D

Laure Dumaz ${ }^{1}$, joint works with Cyril Labbé ${ }^{2}$
${ }^{1}$ CNRS, DMA, École Normale Supérieure
2 LPSM, Université Paris Cité

Coulomb gases and universality
December 2022

Motivations

RMT Wigner ' $50 \rightarrow$ repulsion between the eigenvalues.

Motivations

RMT Wigner '50 \rightarrow repulsion between the eigenvalues.
Aldous objective method (implemented for RMT in particular by Valkó, Virág and coauthors): take the limit of the whole random matrix itself!

Motivations

RMT Wigner '50 \rightarrow repulsion between the eigenvalues.
Aldous objective method (implemented for RMT in particular by Valkó, Virág and coauthors): take the limit of the whole random matrix itself!

Limiting objects: Stochastic Airy Operator for the edge, Hyperbolic carousel operators for the bulk.

Motivations

RMT Wigner '50 \rightarrow repulsion between the eigenvalues.
Aldous objective method (implemented for RMT in particular by Valkó, Virág and coauthors): take the limit of the whole random matrix itself!

Limiting objects: Stochastic Airy Operator for the edge, Hyperbolic carousel operators for the bulk.
\rightarrow Read statistics of eigenvalues directly on the limiting operator (thanks to stochastic calculus).

Motivations

RMT Wigner ' $50 \rightarrow$ repulsion between the eigenvalues.
Aldous objective method (implemented for RMT in particular by Valkó, Virág and coauthors): take the limit of the whole random matrix itself!

Limiting objects: Stochastic Airy Operator for the edge, Hyperbolic carousel operators for the bulk.
\rightarrow Read statistics of eigenvalues directly on the limiting operator (thanks to stochastic calculus).

Ultimate goal : Understand random Schrödinger operators using the link with RMT ?

Schrödinger operator

Differential self-adjoint operator on \mathbb{R}^{d} :

$$
u \mapsto-\Delta u+V \cdot u .
$$

V : potential.

Schrödinger operator

Differential self-adjoint operator on \mathbb{R}^{d} :

$$
u \mapsto-\Delta u+V \cdot u .
$$

V : potential.
Interpolation between Laplacian:

$$
u \mapsto-\Delta u,
$$

and multiplication by the potential V :

$$
u \mapsto V \cdot u .
$$

Schrödinger operator

Laplacian operator:

$$
u \mapsto-\Delta u
$$

electron conduction in a crystal.
The potential V models the impurities.

Schrödinger operator

Laplacian operator:

$$
u \mapsto-\Delta u
$$

electron conduction in a crystal.
The potential V models the impurities.
Celebrated model since Anderson ('58).

Schrödinger operator

Laplacian operator:

$$
u \mapsto-\Delta u
$$

electron conduction in a crystal.
The potential V models the impurities.
Celebrated model since Anderson ('58).
Main results/conjectures:

- $d=1$: Anderson localization (result).
- $d=2$: Anderson localization (conjecture).
- $d=3$ and above, there is a delocalized phase if V small enough (major conjecture!).

1D Schrödinger operator

In this talk: $d=1, V=\xi=$ random potential:= white noise.

1D Schrödinger operator

In this talk: $d=1, V=\xi=$ random potential:= white noise.

- Advantages: white noise is natural, it is explicit, and it has nice properties.
- Inconvenient: it is irregular.

Introduce:

$$
\mathcal{H}_{L}: u \in \mathcal{D}_{L} \mapsto-\partial_{t}^{2} u+\xi \cdot u
$$

where \mathcal{D}_{L} subdomain of $L^{2}(-L / 2, L / 2)$ with Dirichlet boundary conditions.

1D Schrödinger operator

In this talk: $d=1, V=\xi=$ random potential:= white noise.

- Advantages: white noise is natural, it is explicit, and it has nice properties.
- Inconvenient: it is irregular.

Introduce:

$$
\mathcal{H}_{L}: u \in \mathcal{D}_{L} \mapsto-\partial_{t}^{2} u+\xi \cdot u
$$

where \mathcal{D}_{L} subdomain of $L^{2}(-L / 2, L / 2)$ with Dirichlet boundary conditions.

And

$$
\mathcal{H}: u \in \mathcal{D} \mapsto-\partial_{t}^{2} u+\xi \cdot u
$$

where \mathcal{D} subdomain of $L^{2}(\mathbb{R})$.

Anderson localization

Theorem (L.D., C. Labbé '22+)

When $L \rightarrow \infty, \mathcal{H}_{L}$ converges towards \mathcal{H} in the strong resolvent sense.
\mathcal{H} has a pure point spectrum, its eigenfunctions decay exponentially: for every eigenvalue λ,

$$
\frac{1}{|t|} \ln \sqrt{\varphi_{\lambda}(t)^{2}+\varphi_{\lambda}^{\prime}(t)^{2}} \rightarrow|t| \rightarrow \infty-\gamma_{\lambda}
$$

where $\gamma_{\lambda}>0$ is the Lyapunov exponent associated to the eigenproblem.

Anderson localization

Theorem (L.D., C. Labbé '22+)

When $L \rightarrow \infty, \mathcal{H}_{L}$ converges towards \mathcal{H} in the strong resolvent sense.
\mathcal{H} has a pure point spectrum, its eigenfunctions decay exponentially: for every eigenvalue λ,

$$
\frac{1}{|t|} \ln \sqrt{\varphi_{\lambda}(t)^{2}+\varphi_{\lambda}^{\prime}(t)^{2}} \rightarrow|t| \rightarrow \infty-\gamma_{\lambda}
$$

where $\gamma_{\lambda}>0$ is the Lyapunov exponent associated to the eigenproblem.

This result was expected but there are some technical issues as white noise is singular.

Study of \mathcal{H}_{L}

Study the fine statistics of the spectrum of \mathcal{H}_{L} when $L \rightarrow \infty$.

E : energy: it may depend on the size of the system L. $n(E)$: density of states
(roughly, \# of eigenvalues $[E, E+\varepsilon] \simeq n(E) L \varepsilon$)

Goal

Study the spectrum of this operator when $L \rightarrow \infty$.

Usually for random operators with discrete spectrum, there is a dichotomy:

- Localization of the eigenvectors and Poisson distribution of eigenvalues.

Goal

Study the spectrum of this operator when $L \rightarrow \infty$.

Usually for random operators with discrete spectrum, there is a dichotomy:

- Delocalization of the eigenvectors and repulsion of the eigenvalues.

Summary of our results

- When $E \ll L$:

Eigenvalues: Poisson, Eigenvectors: localized.

- When $E=O(L)$ or $E \gg L$:

Eigenvalues: repulsion, Eigenvectors: delocalized.

Critical Regime $E=O(L)$

Zoom around energies E of order L.

- Eigenvalues :

$$
\operatorname{Ln}(E)\left(\lambda_{i}-E\right),
$$

Critical Regime $E=O(L)$

Zoom around energies E of order L.

- Eigenvalues :

$$
\operatorname{Ln}(E)\left(\lambda_{i}-E\right),
$$

- Eigenfunctions :

$$
L \varphi_{i}^{2}(L t) d t
$$

Eigenfunction φ_{i}

Delocalization: Critical regime

Fix $\tau>0$ and let $L / E \rightarrow \tau$.

$$
\mathcal{Q}_{L}:=\sum_{i \geq 1} \delta_{\left(L n(E)\left(\lambda_{i}-E\right), L \varphi_{i}^{2}(L t) d t\right)}
$$

Delocalization: Critical regime

Fix $\tau>0$ and let $L / E \rightarrow \tau$.

$$
\mathcal{Q}_{L}:=\sum_{i \geq 1} \delta_{\left(L n(E)\left(\lambda_{i}-E\right), L \varphi_{i}^{2}(L t) d t\right)}
$$

Theorem (D., Labbé ('21))

\mathcal{Q}_{L} converges towards a random point process, characterized by coupled diffusions.

- Limiting eigenvalue point process $=$ Sch $_{\tau}$ point proces introduced by Kritchevski, Valkó and Virág (2012), in the context of discrete random Schrödinger operators.

Delocalization: Critical regime

Fix $\tau>0$ and let $L / E \rightarrow \tau$.

$$
\mathcal{Q}_{L}:=\sum_{i \geq 1} \delta_{\left(L n(E)\left(\lambda_{i}-E\right), L \varphi_{i}^{2}(L t) d t\right)}
$$

Theorem (D., Labbé ('21))

\mathcal{Q}_{L} converges towards a random point process, characterized by coupled diffusions.

- Limiting eigenvalue point process $=$ Sch $_{\tau}$ point proces introduced by Kritchevski, Valkó and Virág (2012), in the context of discrete random Schrödinger operators. Repulsion between the points!

Delocalization: Critical regime

Fix $\tau>0$ and let $L / E \rightarrow \tau$.

$$
\mathcal{Q}_{L}:=\sum_{i \geq 1} \delta_{\left(L n(E)\left(\lambda_{i}-E\right), L \varphi_{i}^{2}(L t) d t\right)}
$$

Theorem (D., Labbé ('21))

\mathcal{Q}_{L} converges towards a random point process, characterized by coupled diffusions.

- Limiting eigenvalue point process $=$ Sch $_{\tau}$ point proces introduced by Kritchevski, Valkó and Virág (2012), in the context of discrete random Schrödinger operators. Repulsion between the points!
- Typical limiting eigenvectors $=$ exponential of a Brownian motion plus a drift around a uniform point in $[-1 / 2,1 / 2]$ (conjectured for this model by Rifkind and Virág (2018)). Interaction between the eigenvectors.

Delocalization: Behavior of eigenvectors

$$
L \varphi_{i}^{2}(L t) d t
$$

Eigenvector associated to an energy near E

$C \exp \left(-\frac{\tau}{4}|t-U|+\frac{\sqrt{\tau}}{\sqrt{2}} W(t-U)\right) d t$
$U \sim$ uniform
W two-sided Brownian motion

Delocalization: Behavior of eigenvectors

$$
C \exp \left(-\frac{\tau}{4}|t-U|+\frac{\sqrt{\tau}}{\sqrt{2}} W(t-U)\right) d t
$$

Universal shape: conjectured by Rifkind and Virág to arise in many 1D models through their transition from localized to delocalized.

Delocalization: Behavior of eigenvectors

$$
C \exp \left(-\frac{\tau}{4}|t-U|+\frac{\sqrt{\tau}}{\sqrt{2}} W(t-U)\right) d t
$$

Universal shape: conjectured by Rifkind and Virág to arise in many 1D models through their transition from localized to delocalized.

This shape starts to appear in the localized regime when $1 \ll E \ll L$ when we zoom around the argmax of the function!

From localization to delocalization

Localized regime for $1 \ll E \ll L$: zoom around the argmax of the function!

Delocalization: Critical regime

Convergence at the level of operators:

Delocalization: Critical regime

Convergence at the level of operators:

Theorem (D., Labbé ('21))

The rescaled (around E) and unitarily changed operator \mathcal{H}_{L} converges towards the operator

$$
\mathrm{CS}_{\tau}:=2\left(\begin{array}{cc}
0 & -\partial_{t} \\
\partial_{t} & 0
\end{array}\right)+\sqrt{\tau}\left(\begin{array}{cc}
d \mathcal{B}+\frac{1}{\sqrt{2}} d \mathcal{W}_{1} & \frac{1}{\sqrt{2}} d \mathcal{W}_{2} \\
\frac{1}{\sqrt{2}} d \mathcal{W}_{2} & d \mathcal{B}-\frac{1}{\sqrt{2}} d \mathcal{W}_{1}
\end{array}\right)
$$

where $\mathcal{B}, \mathcal{W}_{1}, \mathcal{W}_{2}$ are independent Brownian motions, on $L^{2}\left((0,1), \mathbb{R}^{2}\right)$ with Dirichlet b.c..

Delocalization: Critical regime

Convergence at the level of operators:

Theorem (D., Labbé ('21))

The rescaled (around E) and unitarily changed operator \mathcal{H}_{L} converges towards the operator

$$
\mathrm{CS}_{\tau}:=2\left(\begin{array}{cc}
0 & -\partial_{t} \\
\partial_{t} & 0
\end{array}\right)+\sqrt{\tau}\left(\begin{array}{cc}
d \mathcal{B}+\frac{1}{\sqrt{2}} d \mathcal{W}_{1} & \frac{1}{\sqrt{2}} d \mathcal{W}_{2} \\
\frac{1}{\sqrt{2}} d \mathcal{W}_{2} & d \mathcal{B}-\frac{1}{\sqrt{2}} d \mathcal{W}_{1}
\end{array}\right)
$$

where $\mathcal{B}, \mathcal{W}_{1}, \mathcal{W}_{2}$ are independent Brownian motions, on $L^{2}\left((0,1), \mathbb{R}^{2}\right)$ with Dirichlet b.c..

- The convergence holds in law in the strong resolvent sense + there is convergence in law of the eigenvalues/eigenvectors.

Delocalization: Critical regime

Convergence at the level of operators:

Theorem (D., Labbé ('21))

The rescaled (around E) and unitarily changed operator \mathcal{H}_{L} converges towards the operator

$$
\mathrm{CS}_{\tau}:=2\left(\begin{array}{cc}
0 & -\partial_{t} \\
\partial_{t} & 0
\end{array}\right)+\sqrt{\tau}\left(\begin{array}{cc}
d \mathcal{B}+\frac{1}{\sqrt{2}} d \mathcal{W}_{1} & \frac{1}{\sqrt{2}} d \mathcal{W}_{2} \\
\frac{1}{\sqrt{2}} d \mathcal{W}_{2} & d \mathcal{B}-\frac{1}{\sqrt{2}} d \mathcal{W}_{1}
\end{array}\right)
$$

where $\mathcal{B}, \mathcal{W}_{1}, \mathcal{W}_{2}$ are independent Brownian motions, on $L^{2}\left((0,1), \mathbb{R}^{2}\right)$ with Dirichlet b.c..

- The convergence holds in law in the strong resolvent sense + there is convergence in law of the eigenvalues/eigenvectors.
- Such a form was appearing in the works of Edelman and Sutton (2006) as a conjecture for the bulk of limiting random matrices.

Delocalization: Critical regime

Some remarks:

- The limiting operator acts on \mathbb{R}^{2} valued functions: The initial space is enlarged. \rightarrow transformation of \mathcal{H}_{L} is non trivial.

Delocalization: Critical regime

Some remarks:

- The limiting operator acts on \mathbb{R}^{2} valued functions: The initial space is enlarged. \rightarrow transformation of \mathcal{H}_{L} is non trivial.
- CS_{τ} is not properly defined in this form. An elegant way to define it is though Dirac operators, which appeared recently in Valkó and Virág (2016) for the limit of many random matrix models.

Delocalization: Critical regime

Some remarks:

- The limiting operator acts on \mathbb{R}^{2} valued functions: The initial space is enlarged. \rightarrow transformation of \mathcal{H}_{L} is non trivial.
- CS_{τ} is not properly defined in this form. An elegant way to define it is though Dirac operators, which appeared recently in Valkó and Virág (2016) for the limit of many random matrix models.
- Our approach could probably be extended to other models (bulk of tridiagonal matrices or other differential operators).

Link with the operators of Valkó and Virág

Dirac operators: differential self-adjoint operator of the form

$$
\tau_{R}: \quad f=\binom{f_{1}}{f_{2}} \mapsto 2 R(t)^{-1} J \partial_{t}\binom{f_{1}}{f_{2}}
$$

$R(t): 2 \times 2$ symmetric positive matrix of $\operatorname{det}=1, J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Link with the operators of Valkó and Virág

Dirac operators: differential self-adjoint operator of the form

$$
\tau_{R}: \quad f=\binom{f_{1}}{f_{2}} \mapsto 2 R(t)^{-1} J \partial_{t}\binom{f_{1}}{f_{2}}
$$

$R(t): 2 \times 2$ symmetric positive matrix of $\operatorname{det}=1, J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Valkó and Virág ('16) proved that the spectrum of those operators for a well-chosen random R corresponds to the spectrum of various famous RMT (Sine ${ }_{\beta}$, Bessel $_{\beta}$ etc.).

Link with the operators of Valkó and Virág

Dirac operators:

$$
\tau_{R}: \quad f=\binom{f_{1}}{f_{2}} \mapsto 2 R(t)^{-1} J \partial_{t}\binom{f_{1}}{f_{2}}
$$

Write $R=\frac{1}{\operatorname{det} X} X^{t} X$ with $X(t)=\left(\begin{array}{cc}1 & -x(t) \\ 0 & y(t)\end{array}\right)$.

Link with the operators of Valkó and Virág

Dirac operators:

$$
\tau_{R}: \quad f=\binom{f_{1}}{f_{2}} \mapsto 2 R(t)^{-1} J \partial_{t}\binom{f_{1}}{f_{2}}
$$

Write $R=\frac{1}{\operatorname{det} X} X^{t} X$ with $X(t)=\left(\begin{array}{cc}1 & -x(t) \\ 0 & y(t)\end{array}\right)$.
Eigenvalue equation:

$$
\tau_{R} f=\lambda f
$$

Link with the operators of Valkó and Virág

Dirac operators:

$$
\tau_{R}: \quad f=\binom{f_{1}}{f_{2}} \mapsto 2 R(t)^{-1} J \partial_{t}\binom{f_{1}}{f_{2}}
$$

Write $R=\frac{1}{\operatorname{det} X} X^{t} X$ with $X(t)=\left(\begin{array}{cc}1 & -x(t) \\ 0 & y(t)\end{array}\right)$.
Eigenvalue equation:

$$
\tau_{R} f=\lambda f
$$

Fact: $f_{1}(t) / f_{2}(t) \in \mathbb{R} \cup\{\infty\}=\partial \mathbb{H}$ follows hyperbolic rotation at speed $\lambda d t$ around $x(t)+i y(t)$ in \mathbb{H}.

Link with the operators of Valkó and Virág

Eigenvalue equation: $\tau_{R} f=\lambda f$.
Fact: $f_{1}(t) / f_{2}(t) \in \mathbb{R} \cup\{\infty\}=\partial \mathbb{H}$ follows hyperbolic rotation at speed $\lambda d t$ around $x(t)+i y(t)$.

Link with the operators of Valkó and Virág

Theorem (D.,Labbé, 2021)
The operator CS_{τ} is unitarily equivalent to a Dirac operator associated to a hyperbolic Brownian motion of variance $\tau / 2$.

Unitary map is random (non trivial).
Boundary conditions are complicated but explicit.

Some ideas for the proofs in the LOCALIZED REGIME

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[-L / 2, L / 2]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(-L / 2)=0$ (without any condition on $\varphi(L / 2)$).

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on [$-L / 2, L / 2$]:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(-L / 2)=0$ (without any condition on $\varphi(L / 2)$).
For all $\lambda \in \mathbb{R}$, there is an unique solution φ_{λ} (up to a scaling).

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[-L / 2, L / 2]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(-L / 2)=0$ (without any condition on $\varphi(L / 2)$).
For all $\lambda \in \mathbb{R}$, there is an unique solution φ_{λ} (up to a scaling).
The couple $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenvalue/eigenvector when

$$
\varphi_{\lambda}(L / 2)=0 .
$$

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[-L / 2, L / 2]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(-L / 2)=0$ (without any condition on $\varphi(L / 2)$).
For all $\lambda \in \mathbb{R}$, there is an unique solution φ_{λ} (up to a scaling).
The couple $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenvalue/eigenvector when

$$
\varphi_{\lambda}(L / 2)=0 .
$$

To keep in mind: it is much easier to analyse the solution of the ODE than the solution of the eigenvalue problem: λ is random and depends on the whole potential ξ.

Eigenvalue equation

One can also impose first $\hat{\varphi}(L / 2)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

Eigenvalue equation

One can also impose first $\hat{\varphi}(L / 2)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

For all $\lambda \in \mathbb{R}$, there is an unique solution $\hat{\varphi}_{\lambda}$ (up to a scaling).

Eigenvalue equation

One can also impose first $\hat{\varphi}(L / 2)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

For all $\lambda \in \mathbb{R}$, there is an unique solution $\hat{\varphi}_{\lambda}$ (up to a scaling).
The couple $\left(\lambda, \hat{\varphi}_{\lambda}\right)$ is an eigenvalue/eigenvector when

$$
\hat{\varphi}_{\lambda}(-L / 2)=0
$$

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[-L / 2, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L / 2]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[-L / 2, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L / 2]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[-L / 2, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L / 2]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue \rightarrow close to eigenvector if $u=$ argmax of eigenvector.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[-L / 2, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L / 2]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue \rightarrow close to eigenvector if $u=$ argmax of eigenvector.

It helps A LOT because it is much easier to analyze the forward or backward solution of the ODE than the eigenvalue equation (when λ eigenvalue, λ is random and depends on the whole potential $\xi!$).

Localization: A key formula

Proposition (Goldsheid Molchanov Pastur formula)

For all continuous, compactly supported on the first variable, and bounded G :

$$
\mathbb{E}\left[\sum_{\lambda \text { eigenvalue }} G\left(\lambda, \varphi_{\lambda}\right)\right]
$$

$=\int_{\lambda \in \mathbb{R}} \int_{-L / 2}^{L / 2} \int_{0}^{\pi} \sin ^{2}(\theta) p_{\lambda}(\theta) p_{\lambda}(\pi-\theta) \mathbb{E}\left[G\left(\lambda, \frac{\varphi_{\lambda}^{(u)}}{\left\|\varphi_{\lambda}^{(u)}\right\|_{2}}\right)\right] d \lambda d u d \theta$,
where

- $\varphi^{(u)}$ is the concatenation of the forward process and backward process at time u.
- $p_{\lambda}(\theta)$ transition probability of θ_{λ} "phase function" (argument of $\varphi_{\lambda}^{\prime}+i \varphi_{\lambda}$).

THANK YOU!

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.

Divide $[-L / 2, L / 2]$ into small boxes $B_{i}, i=1, \cdots, N$ of same length.

Eigenvectors

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed or $E \ll L)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[-L / 2, L / 2]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

Eigenvectors

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed or $E \ll L)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[-L / 2, L / 2]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

Eigenvectors

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.
(B) $\mathbb{E}[N(\Delta)] \sim 2 h$.

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed or $E \ll L)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[-L / 2, L / 2]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

Eigenvectors

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.
(B) $\mathbb{E}[N(\Delta)] \sim 2 h$.
(C) $\sum_{i} \mathbb{P}\left[N_{i}(\Delta) \geq 2\right] \rightarrow 0$.

