"Escaping the crowd": emergent outliers in rank-1 non-normal deformations of GUE/CUE¹

Yan V Fyodorov

Department of Mathematics

EPSRC grant EP/V002473/1 "Random Hessians and Jacobians: theory and applications".

Coulomb Gases and Universality, Dec 5-9, 2022, Paris

¹Based on: joint work with **Boris Khoruzhenko** and **Mihail Poplavsky**, arXiv:2211.00180

Consider two ensembles described by $N \times N$ random matrices J which are **non-selfadjoint** and **non-normal**. The first one is of the form

 $J_{GUE} = H + i\gamma \operatorname{diag}(1, 0, \dots, 0) \equiv H + i\gamma \mathbf{e} \otimes \mathbf{e}^T, \quad \gamma \ge 0, \text{ and } \mathbf{e}^T = (1, 0, \dots, 0)$ where H is **complex Hermitian** $\in GUE$, with N real eigenvalues X_i whose density converges as $N \to \infty$ to the Wigner semicircle: $\nu(X) = \frac{1}{2\pi}\sqrt{4 - X^2}$. All eigenvalues z_i of J_{GUE} are distributed for $\gamma > 0$ in the **upper half** of the complex plane $\Im z > 0$, with the joint probability density (**YF** & **B. Khoruzhenko** '99):

$$\mathcal{P}_{N}\{z_{i}\} = \frac{1}{h_{\beta,N}} e^{-\frac{\beta N}{4} \sum_{i=1}^{N} Re\left(z_{i}^{2}\right)} \times \prod_{1 \le j < k \le N} |z_{j} - z_{k}|^{2} \delta\left(\sum_{i=1}^{N} Im \, z_{j} - \gamma\right)$$

Similarly, the second ensemble is defined as

$$J_{CUE} = \hat{U} \operatorname{diag}(\sqrt{1-T}, 1, \dots, 1), \quad 0 \le T \le 1$$

with $N \times N$ matrix $\hat{U} \in CUE$ is Haar-distributed **complex unitary** with unimodular eigenvalues $e^{i\theta_i}$, θ_i are spaced randomly in $[0, 2\pi]$, with mean spacing $\Delta = 2\pi/N$. All eigenvalues z_i of J_{CUE} for T > 0 belong to the **interior of the unit circle** |z| < 1 with the JPD (**YF**' 00)

$$\mathcal{P}_N\{z_i\} = \frac{1}{N\pi^N T^{N-1}} \prod_{1 \le i < j \le N} |z_j - z_i|^2 \,\delta\Big(1 - T - \prod_{j=1}^N |z_j|^2\Big).$$

Remark: Both ensembles emerge in a random matrix description of wave scattering from a **chaotic domain**, cf. **Verbaarschot**, **Weidenmueller**, **Zirnbauer** '85

Escape to infinity from the "inner" domain can be effectively described by a **non-Hermitian Hamiltonian** $J_{eff} = H - i\gamma \mathbf{e} \otimes \mathbf{e}^T$, $\gamma \ge 0$.

Similar meaning can be attributed to **subunitary** J_{CUE} describing time-periodic evolution under open **quantum chaotic maps**.

In the physics literature the complex eigenvalues z_i of J_{eff} are associated with **poles** of the **scattering matrix**, known as **"resonances**", with $\Im z_i$ called the **"resonance width"**. In that context it has been predicted heuristically by **F.-M.Dittes** et al. '91 that at $\gamma = 1$ an **abrupt restructuring** of resonance widths in the complex plane should take place, with a single **outlier** of finite width $\gamma - \gamma^{-1}$ emerging for $\gamma > 1$. Rigorously confirmed: **O'Rourke** & Wood' 17; **J. Rochet** '17.

Trajectories of eigenvalues of the matrix $H + i\gamma \mathbf{e} \otimes \mathbf{e}^T$ of dimension N = 1000 as functions of γ . The blue dots correspond to values in $0 \le \gamma \le 0.5$ the red dots to values in $0.5 \le \gamma \le 1$ and the green dots to values $1.0 \le \gamma \le 1.5$ with increments 0.01.

Our main goal is to get a closer insight into **extreme values** and **emergence** of the **outlier**, and develop the quantitative understanding of the **restructuring transition** and **trapping phenomenon**.

A reminder on Extreme Value Statistics for i.i.d. unbounded positive variables:

Consider a set of *N* real random i.i.d. variables x_1, \ldots, x_N with **parent probability** density p(x) supported on the whole positive semi-axis $x \in [0, \infty)$. Define

 $M = max\{x_1, \dots, x_N\}$ and $Q_N(x) = Prob[M \le x]$

Question: Does $Q_N(x)$ show any universality as $N \to \infty$? It turns out only two possibilities arise:

• If the parent density decays as a powerlaw: $p(x \gg 1) \sim Ax^{-(1+\alpha)}$ with $A, \alpha > 0$, then after a rescaling Q_N converges to the **Fréchet** limiting form:

$$\lim_{N\to\infty} Q_N(b_N z) = e^{-z^{-\alpha}} \theta(z) \text{ with } b_N = (AN/\alpha)^{\frac{1}{\alpha}}$$

• If the parent density decays faster as any power: $p(x \gg 1) \sim e^{-x^{\delta}}$ with $\delta > 0$, then after a rescaling and a shift Q_N converges to the **Gumbel** limiting form:

$$\lim_{N \to \infty} Q_N \left(a_N + b_N z \right) = e^{-e^{-z}} \text{ with } a_N = (\ln N)^{\frac{1}{\delta}} \text{ and } b_N = \delta^{-1} \left(\ln N \right)^{\frac{1}{\delta} - 1}$$

To get insights into e.v.s. of resonances, we concentrate on the mean density of imaginary parts for complex eigenvalues $z_i = X_i + iY_i$, defined as

$$o_N^{(im)}(Y) = \left\langle \frac{1}{N} \sum_{i=1}^N \delta(Y - \Im z_i) \right\rangle$$

Depending on the value of Y this function has a very different behaviour.

(I) Let Y to be of the same order as the mean eigenvalue spacing $\Delta \sim N^{-1}$ in the *horizontal* direction, that is Y = y/N while keeping y fixed as $N \to \infty$. Then

$$\lim_{N \to \infty} \frac{1}{N} \rho_N^{(im)} \left(Y = \frac{y}{N} \right) = -\frac{d}{dy} \left[\frac{e^{-y\left(\gamma + \frac{1}{\gamma}\right)}}{y} I_1(2y) \right] := \rho_\infty(y),$$

where $I_p(z)$ is the modified Bessel function. One can infer that

(a) $\int_0^{\infty} \rho_{\infty}(y) y \, dy = \gamma$ for $\gamma < 1$ in full agreement with the exact sum rule $\sum \Im z_i = \gamma$. However, for $\gamma > 1$ one finds $\int_0^{\infty} \rho_{\infty}(y) y \, dy = \frac{1}{\gamma} < \gamma$. The sum rule deficit $\gamma - \frac{1}{\gamma}$ suggests that for $\gamma > 1$ some eigenvalues are "missing" at the scale 1/N.

(b)
$$\rho(y \gg 1) \sim \begin{cases} y^{-3/2} e^{-y\left(\gamma + \frac{1}{\gamma} - 2\right)} & \text{for } \gamma \neq 1 \\ y^{-5/2} & \text{for } \gamma = 1 \end{cases}$$

hinting to a **Gumbel**-type e.v.s for $\gamma \neq 1$ but **Fréchet**-type for $\gamma = 1$ with $Y_{max} \sim N^{-1/3}$.

To search for missing eigenvalues one should look at scales of imaginary parts such that $N^{-1} \ll Y < \gamma$ as $N \to \infty$. One can show that:

(II) for every fixed γ the density $\rho_N^{(im)}(Y)$ has a Large Deviation form:

$$\rho_N^{(im)}(Y) = \Psi_\gamma(Y) e^{-N\Phi_\gamma(Y)}, \quad Y \in [0,\gamma)$$

where the rate function is given by

$$\Phi_{\gamma}(Y) = Y(\gamma - Y) - \ln \frac{\gamma - Y}{\gamma} - Yr_{*}(Y) + 2 \ln r_{*}(Y),$$
with $r_{*}(Y) = \frac{\sqrt{Y^{2} + 4} - Y}{2}$ and $\Psi_{\gamma}(Y)$ is also explicitly known.
It further turns out that:
(a) for $\gamma < 1$ the function $\frac{d}{dY} \Phi_{\gamma}(Y) > 0, \forall Y \in [0, \gamma).$
(b) $\Phi_{\gamma}(Y)$ becomes non-monotonic for $\gamma > 1$ and has the global minimum $\Phi_{\gamma}(Y_{*}) = 0$ at $Y_{*} = \gamma - \frac{1}{\gamma}$ and the local maximum at $Y_{**} = \frac{2(\gamma - \frac{1}{\gamma})}{3 + \sqrt{1 + \frac{8}{\gamma^{2}}}} < Y_{*}.$
Moreover, the pre-exponential factor $\Psi_{\gamma}(Y)$ vanishes at Y_{**} .

Remark: For $\gamma > 1$ the value $\Im z_i = Y_*$ is the most probable value for the "resonance width" in the region of "wide resonances" $Y \gg 1/N$, defining for $N \gg 1$ a single outlier. At the same time, the value $Y = Y_{**}$ can be interpreted as the **true boundary** between the outlier and the "sea of narrow resonances" extending from the scale $Y \sim 1/N$ to $Y = Y_{**}$.

Histogram of the distribution of the (a) imaginary parts of the eigenvalues z_j of $J = H + 2i \operatorname{diag}(1, 0, \dots, 0)$ versus the Large Deviation approximation $\rho_N^{(im)}(Y)$. Note: $Y_{**} \approx 0.634$ and $Y_* = 1.5$. (b) the largest imaginary part $Y_{max} = max_{j=1\dots N}\Im z_j$ versus $N\rho_N^{(im)}(Y)$. Each plot was produced from 100,000 realisations of GUE matrix of dimension N = 50. One can observe positive skewness in the fluctuations of Y_{max} for finite matrix dimensions beyond the Gaussian approximation for LDP in the vicinity of $Y = Y_* = \gamma - \frac{1}{\gamma}$ given by:

$$\rho_N^{(im)}(Y) \approx \frac{1}{N\sqrt{2\pi\sigma^2}} e^{-\frac{(Y-Y_*)^2}{2\sigma^2}}, \quad \sigma^2 = \frac{1}{N\gamma^2} \frac{\gamma^2 + 1}{\gamma^2 - 1}.$$

The value $\gamma = 1$ is critical as the outlier merges with the "sea".

As was shown by **G. Dubach** & **L. Erdös**'21 the outlier is still **distinguishable** from the sea for $\gamma - 1 > N^{-1/3+\epsilon}$, $\forall \epsilon$ suggesting the **critical scaling** $N^{-1/3}$.

We develop a more detailed picture.

Theorem (YF, Khoruzhenko & Poplavskyi '22). Consider the scaling regime $\gamma = 1 + \frac{\alpha}{N^{1/3}}$, where the parameter $\alpha \in \mathbb{R}$ is fixed. Then for $Y = \frac{m}{N^{1/3}}$ with fixed m > 0 the following limit exists:

$$\lim_{N \to \infty} \left[N \rho_N^{(im)}(Y) \frac{dY}{dm} \right] = \frac{1}{2\sqrt{\pi}} \frac{\left[\frac{3}{2m} + \left(\frac{3m}{2} - \alpha \right)^2 \right]}{m^{3/2}} e^{-m\left(\alpha - \frac{m}{2}\right)^2} := \tilde{\rho}(m), \quad m > 0.$$

Remark 1: At $N \to \infty$ the mean number of eigenvalues with imaginary parts $\Im z$ exceeding $Y = \frac{m}{N^{1/3}}$ is given by $\int_m^{\infty} \tilde{\rho}(m) dm = O(1)$.

This implies that $N^{-1/3} \gg \Delta = 1/N$ is indeed the correct scale of the **extreme** values for imaginary parts in the critical regime.

Remark 2: We can separately show that only eigenvalues with **real parts** in a narrow window of the widths $|\Re z_i| \sim N^{-1/3} \ll 1$ around the origin contribute to **extreme** values at the scale $\Im z \sim N^{-1/3}$.

Trapping phenomenon: the expected number of eigenvalues with imaginary parts $\Im z$ exceeding the level $\frac{m}{N^{1/3}}$ as function of α developes a maximum:

Exp number of EGVs above the line $\text{Im}(z) = \frac{m}{\sqrt[3]{N}}$ as fnc of α m = 0.1 (red), 0.2 (blue), 0.3 (black), 0.5 (magenta)

Challenge remaining: finding the distribution of the largest imaginary part in the scaling regime.

This can be achieved for the model of **subunitary** matrices:

$$J_{CUE} = \hat{U} \operatorname{diag}(\sqrt{1-T}, 1, \dots, 1), \quad 0 < T \le 1.$$

Trajectories of eigenvalues of the matrix $J_{CUE} = \hat{U} \operatorname{diag}(\sqrt{1-T}, 1, \dots, 1)$, of dimension N = 100 as functions of $\tau = \sqrt{1-T}$.

The blue dots correspond to values of τ in $1 \ge \tau \ge 0.2$, the red dots to values in $0.2 \ge \tau \ge 0.08$ with decrements 0.01. One can see emergence of a few outliers when $\tau \sim N^{-1/2}$ (equivalently $1 - T \sim N^{-1}$). Our main goal is to get a closer insight into the associated Extreme Value Statistics (EVS) in the critical regime $T = 1 - \frac{t}{N}$, with t fixed as $N \to \infty$.

The quantity of our primary interest is the eigenvalue z_i closest to the origin, i.e. with the smallest modulus

$$x_{min} := \min_{j=1,\dots,N} |z_j|$$

Note that for T = 1 the matrix J_{CUE} has exactly zero eigenvalue, hence $x_{min} = 0$ Our main result is the following

Theorem (YF & Khoruzhenko '22+). In the scaling limit $N \to \infty$ keeping t = N(1-T) > 0 fixed, the smallest modulus x_{min} converges weakly to a random variable X whose cumulative distribution function $F_X^{(t)}(x) = \operatorname{Prob} \{X \leq x\}$ is given by the series

$$F_X^{(t)}(x) = e^t \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n(n-1)} \exp\{-\frac{t}{x^{2n}}\}}{\prod_{k=1}^n (1-x^{2k})} \qquad (0 < x < 1).$$

Remark. This is different from the standard laws due to **Gumbel**, **Fréchet** and **Weibull** characterising the extreme values in long sequences of i.i.d. random variables.

We can further show that as the parameter t changes over \mathbb{R}_+ , the distribution $F_X^{(t)}(x)$ interpolates between **Fréchet** and **Gumbel** distributions. Namely:

As $t \to 0$ typically $x_{min} \sim \sqrt{t}$ and $\lim_{t\to 0} \Pr(x_{min}/\sqrt{t} < y) = \exp\{-y^{-2}\}$. whereas in the limit $t \gg 1 x_{min}$ is Gumbel-distributed:

$$x_{min} = 1 - \frac{\ln t - \ln(\ln t) + \mathbf{Gumbel}}{2t}$$

Summary:

For the model $J_{GUE} = H + i\gamma \operatorname{diag}(1, 0, \ldots, 0)$ of non-selfadjoint matrices we provided a detailed description of the mean eigenvalue density **restructuring** (aka "trapping transition") in the region of extreme imaginary parts in the complex plane as the function of coupling γ , happening in the critical region $\gamma - 1 \sim N^{-1/3}$. In a related model of subunitary $J_{CUE} = \hat{U} \operatorname{diag}(\sqrt{1-T}, 1, \ldots, 1), \quad 0 \leq T \leq 1$ we were able to compute explicitly the distribution of the eigenvalue with the smallest modulus, finding that in the critical regime $1 - T \sim N^{-1}$ it is described by distribution nontrivially interpolating between Gumbel and Fréchet.

Remark: there is a clear analogy between the restructuring of resonances and the **condensation transition** in models of mass transport, when the globally conserved mass M exceeds a critical value, see e.g. **Majumdar** arXiv.0904.4097.

Open problems: Extremes and outliers - statistics and universality?

Extension of JPD to general β is known (Kozhan'17)

$$\mathcal{P}_{z} \{ z_{i} \} = \frac{1}{h_{\beta,N}} e^{-\frac{\beta N}{4} \sum_{i=1}^{N} Re(z_{i})^{2}} \\ \times \prod_{1 \le j < k \le N} |z_{j} - z_{k}|^{2} \prod_{j,k=1}^{N} |z_{j} - \overline{z}_{k}|^{\frac{\beta}{2} - 1} \delta(\sum_{i=1}^{N} Im z_{j} + \gamma)$$

Perturbations of higher rank? Statistics of left & right eigenvectors? Experimental verifications?