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Consider two ensembles described by N × N random matrices J which are non-
selfadjoint and non-normal. The first one is of the form

JGUE = H + iγ diag(1, 0, . . . , 0) ≡ H + iγ e⊗ eT , γ ≥ 0, and eT = (1, 0, . . . , 0)

where H is complex Hermitian ∈ GUE, with N real eigenvalues Xi whose density
converges as N → ∞ to the Wigner semicircle: ν(X) = 1

2π

√
4−X2.

All eigenvalues zi of JGUE are distributed for γ > 0 in the upper half of the complex
plane ℑz > 0, with the joint probability density (YF & B. Khoruzhenko ’99):

PN {zi} = 1
hβ,N

e−
βN
4

∑N
i=1 Re (z2i ) ×

∏
1≤j<k≤N |zj − zk|2 δ(

∑N
i=1 Imzj − γ)

Similarly, the second ensemble is defined as

JCUE = Û diag(
√
1− T , 1, . . . , 1), 0 ≤ T ≤ 1 ,

with N ×N matrix Û ∈ CUE is Haar-distributed complex unitary with unimodular
eigenvalues eiθi, θi are spaced randomly in [0, 2π], with mean spacing ∆ = 2π/N .
All eigenvalues zi of JCUE for T > 0 belong to the interior of the unit circle |z| < 1
with the JPD (YF’ 00)

PN {zi} = 1
NπNTN−1

∏
1≤i<j≤N |zj − zi|2 δ

(
1− T −

∏N
j=1 |zj|2

)
.



Remark: Both ensembles emerge in a random matrix description of wave scattering
from a chaotic domain, cf. Verbaarschot, Weidenmueller, Zirnbauer ’85

Escape to infinity from the ”inner” domain can be effectively described by a non-
Hermitian Hamiltonian Jeff = H − iγe⊗ eT , γ ≥ 0.
Similar meaning can be attributed to subunitary JCUE describing time-periodic
evolution under open quantum chaotic maps.

In the physics literature the complex eigenvalues zi of Jeff are associated with poles of the

scattering matrix, known as "resonances", with ℑzi called the "resonance width" . In that context

it has been predicted heuristically by F.-M.Dittes et al. ’91 that at γ = 1 an abrupt restructuring of

resonance widths in the complex plane should take place, with a single outlier of finite width γ−γ−1

emerging for γ > 1. Rigorously confirmed: O’Rourke & Wood’ 17; J. Rochet ’17.
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Trajectories of eigenvalues of the matrix H + iγe ⊗ eT of dimension N = 1000 as functions of γ.

The blue dots correspond to values in 0 ≤ γ ≤ 0.5 the red dots to values in 0.5 ≤ γ ≤ 1 and the

green dots to values 1.0 ≤ γ ≤ 1.5 with increments 0.01.

Our main goal is to get a closer insight into extreme values and emergence of the outlier, and

develop the quantitative understanding of the restructuring transition and trapping phenomenon.



A reminder on Extreme Value Statistics for i.i.d. unbounded positive variables:

Consider a set of N real random i.i.d. variables x1, . . . , xN with parent probability
density p(x) supported on the whole positive semi-axis x ∈ [0,∞). Define

M = max{x1, . . . , xN} and QN(x) = Prob [M ≤ x]

Question: Does QN(x) show any universality as N → ∞?

It turns out only two possibilities arise:

• If the parent density decays as a powerlaw: p(x ≫ 1) ∼ Ax−(1+α) with A,α > 0,
then after a rescaling QN converges to the Fréchet limiting form:

limN→∞QN (bNz) = e−z−α
θ(z) with bN = (AN/α)

1
α

• If the parent density decays faster as any power: p(x ≫ 1) ∼ e−xδ
with δ > 0,

then after a rescaling and a shift QN converges to the Gumbel limiting form:

limN→∞QN (aN + bNz) = e−e−z
with aN = (lnN)

1
δ and bN = δ−1 (lnN)

1
δ−1



To get insights into e.v.s. of resonances, we concentrate on the mean density of
imaginary parts for complex eigenvalues zi = Xi + iYi, defined as

ρ
(im)
N (Y ) =

〈
1
N

∑N
i=1 δ(Y −ℑzi)

〉
Depending on the value of Y this function has a very different behaviour.

(I) Let Y to be of the same order as the mean eigenvalue spacing ∆ ∼ N−1 in the
horizontal direction, that is Y = y/N while keeping y fixed as N → ∞. Then

limN→∞
1
Nρ

(im)
N

(
Y = y

N

)
= − d

dy

[
e
−y(γ+1

γ)
y I1(2y)

]
:= ρ∞(y),

where Ip(z) is the modified Bessel function. One can infer that

(a)
∫∞
0

ρ∞(y)y dy = γ for γ < 1 in full agreement with the exact sum rule∑
ℑzi = γ. However, for γ > 1 one finds

∫∞
0

ρ∞(y)y dy = 1
γ < γ. The sum

rule deficit γ − 1
γ suggests that for γ > 1 some eigenvalues are "missing" at the

scale 1/N .

(b) ρ(y ≫ 1) ∼
{

y−3/2e−y(γ+1
γ−2) for γ ̸= 1

y−5/2 for γ = 1

hinting to a Gumbel-type e.v.s for γ ̸= 1 but Fréchet-type for γ = 1 with Ymax ∼ N−1/3.



To search for missing eigenvalues one should look at scales of imaginary parts such
that N−1 ≪ Y < γ as N → ∞. One can show that:

(II) for every fixed γ the density ρ
(im)
N (Y ) has a Large Deviation form:

ρ
(im)
N (Y ) = Ψγ(Y )e−NΦγ(Y ), Y ∈ [0, γ)

where the rate function is given by

Φγ(Y ) = Y (γ − Y )− ln γ−Y
γ − Y r∗(Y ) + 2 ln r∗(Y ),

with r∗(Y ) =

√
Y 2+4−Y

2 and Ψγ(Y ) is also explicitly known.

It further turns out that:
(a) for γ < 1 the function d

dY Φγ(Y ) > 0, ∀Y ∈ [0, γ).
(b) Φγ(Y ) becomes non-monotonic for γ > 1 and has the global minimum

Φγ(Y∗) = 0 at Y∗ = γ − 1
γ and the local maximum at Y∗∗ =

2(γ−1
γ)

3+
√

1+ 8
γ2

< Y∗.

Moreover, the pre-exponential factor Ψγ(Y ) vanishes at Y∗∗.

Remark: For γ > 1 the value ℑzi = Y∗ is the most probable value for the " resonance width" in the

region of "wide resonances” Y ≫ 1/N , defining for N ≫ 1 a single outlier. At the same time,

the value Y = Y∗∗ can be interpreted as the true boundary between the outlier and the ”sea of
narrow resonances” extending from the scale Y ∼ 1/N to Y = Y∗∗.
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Histogram of the distribution of the
(a) imaginary parts of the eigenvalues zj of J = H + 2i diag(1, 0, . . . , 0) versus the
Large Deviation approximation ρ

(im)
N (Y ). Note: Y∗∗ ≈ 0.634 and Y∗ = 1.5.

(b) the largest imaginary part Ymax = maxj=1...Nℑzj versus Nρ
(im)
N (Y ).

Each plot was produced from 100,000 realisations of GUE matrix of dimension
N = 50. One can observe positive skewness in the fluctuations of Ymax for finite
matrix dimensions beyond the Gaussian approximation for LDP in the vicinity of
Y = Y∗ = γ − 1

γ given by:

ρ
(im)
N (Y ) ≈ 1

N
√
2πσ2

e
−(Y−Y∗)2

2σ2 , σ2 = 1
Nγ2

γ2+1
γ2−1

.



The value γ = 1 is critical as the outlier merges with the "sea".

As was shown by G. Dubach & L. Erdös’21 the outlier is still distinguishable from
the sea for γ − 1 > N−1/3+ϵ, ∀ϵ suggesting the critical scaling N−1/3.

We develop a more detailed picture.

Theorem (YF, Khoruzhenko & Poplavskyi ’22). Consider the scaling regime
γ = 1 + α

N1/3 , where the parameter α ∈ R is fixed. Then for Y = m
N1/3 with

fixed m > 0 the following limit exists:

limN→∞

[
Nρ

(im)
N (Y )dYdm

]
= 1

2
√
π

[
3

2m+(3m2 −α)
2
]

m3/2 e−m(α−m
2 )

2

:= ρ̃(m), m > 0 .

Remark 1: At N → ∞ the mean number of eigenvalues with imaginary parts ℑz
exceeding Y = m

N1/3 is given by
∫∞
m

ρ̃(m) dm = O(1).

This implies that N−1/3 ≫ ∆ = 1/N is indeed the correct scale of the extreme
values for imaginary parts in the critical regime.

Remark 2: We can separately show that only eigenvalues with real parts in a narrow
window of the widths |ℜzi| ∼ N−1/3 ≪ 1 around the origin contribute to extreme
values at the scale ℑz ∼ N−1/3.



Trapping phenomenon: the expected number of eigenvalues with imaginary parts
ℑz exceeding the level m

N1/3 as function of α developes a maximum:
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Challenge remaining: finding the distribution of the largest imaginary part in the
scaling regime.

This can be achieved for the model of subunitary matrices:

JCUE = Û diag(
√
1− T , 1, . . . , 1), 0 < T ≤ 1.



Trajectories of eigenvalues of the matrix JCUE = Û diag(
√
1 − T , 1, . . . , 1), of dimension

N = 100 as functions of τ =
√
1 − T .
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The blue dots correspond to values of τ in 1 ≥ τ ≥ 0.2, the red dots to values in 0.2 ≥ τ ≥ 0.08

with decrements 0.01. One can see emergence of a few outliers when τ ∼ N−1/2 (equivalently

1−T ∼ N−1). Our main goal is to get a closer insight into the associated Extreme Value Statistics
(EVS) in the critical regime T = 1 − t

N , with t fixed as N → ∞.



The quantity of our primary interest is the eigenvalue zi closest to the origin, i.e.
with the smallest modulus

xmin := minj=1,...,N |zj|
Note that for T = 1 the matrix JCUE has exactly zero eigenvalue, hence xmin = 0
Our main result is the following

Theorem (YF & Khoruzhenko ’22+). In the scaling limit N → ∞ keeping
t = N(1− T ) > 0 fixed, the smallest modulus xmin converges weakly to a random
variable X whose cumulative distribution function F

(t)
X (x) = Prob {X ≤ x} is given

by the series

F
(t)
X (x) = et

∑∞
n=1(−1)n+1

xn(n−1) exp{− t
x2n

}∏n
k=1(1−x2k)

(0 < x < 1).

Remark. This is different from the standard laws due to Gumbel, Fréchet and Weibull
characterising the extreme values in long sequences of i.i.d. random variables.

We can further show that as the parameter t changes over R+, the distribution
F

(t)
X (x) interpolates between Fréchet and Gumbel distributions. Namely:

As t → 0 typically xmin ∼
√
t and limt→0Pr(xmin/

√
t < y) = exp{−y−2}.

whereas in the limit t ≫ 1 xmin is Gumbel-distributed:

xmin = 1− ln t−ln(ln t)+Gumbel
2t



Summary:

For the model JGUE = H + iγ diag (1, 0, . . . , 0) of non-selfadjoint matrices we
provided a detailed description of the mean eigenvalue density restructuring
(aka "trapping transition”) in the region of extreme imaginary parts in the complex
plane as the function of coupling γ, happening in the critical region γ − 1 ∼ N−1/3 .

In a related model of subunitary JCUE = Û diag(
√
1− T , 1, . . . , 1), 0 ≤ T ≤ 1

we were able to compute explicitly the distribution of the eigenvalue with the smallest
modulus, finding that in the critical regime 1−T ∼ N−1 it is described by distribution
nontrivially interpolating between Gumbel and Fréchet.

Remark: there is a clear analogy between the restructuring of resonances and the
condensation transition in models of mass transport, when the globally conserved
mass M exceeds a critical value, see e.g. Majumdar arXiv.0904.4097.

Open problems: Extremes and outliers - statistics and universality?

Extension of JPD to general β is known ( Kozhan’17)

Pz {zi} = 1
hβ,N

e−
βN
4

∑N
i=1Re (zi)

2

×
∏

1≤j<k≤N |zj − zk|2
∏N

j,k=1 |zj − zk|
β
2−1 δ(

∑N
i=1 Imzj + γ)

Perturbations of higher rank? Statistics of left & right eigenvectors? Experimental verifications?


