Asymptotics of Matrix Models at low temperature

Alice Guionnet

Based on a joint work with E. Maurel Segala

Coulomb gases conference

UIVPA FNS DF IYON

Post doc positions available, see http ://perso.ens-lyon.fr/aguionne/erc/a

Matrix models

It is the distribution of a d-tuple $\mathbf{X}^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ of $N \times N$ Hermitian matrices

$$
d \mathbb{P}_{N}^{V}\left(\mathbf{X}^{N}\right)=\frac{1}{Z_{N}^{V}} e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N}
$$

- $\operatorname{Tr}(A)=\sum A_{i i}$,
- V is a self-adjoint polynomial :

$$
V\left(X_{1}, \ldots, X_{d}\right)=\sum_{r=1}^{k} c_{r} X_{i_{1}^{r}} \ldots X_{i_{p_{r}}}=\sum_{r=1}^{k} \bar{c}_{r} X_{i_{p_{r}}^{r}} \ldots X_{i_{p_{1}}^{r}}
$$

- $d \mathbf{X}^{N}=d X_{1}^{N} \cdots d X_{d}^{N}$ the Lebesgue measure on the entries

$$
d X_{i}^{N}=\prod_{k \leq \ell} d \Re\left(X_{i}(k \ell)\right) \prod_{k<\ell} d \Im\left(X_{i}(k \ell)\right)
$$

Matrix models

It is the distribution of a d-tuple $\mathbf{X}^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ of $N \times N$ Hermitian matrices

$$
d \mathbb{P}_{N}^{V}\left(\mathbf{X}^{N}\right)=\frac{1}{Z_{N}^{V}} e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N}
$$

- $\operatorname{Tr}(A)=\sum A_{i i}$,
- V is a self-adjoint polynomial :

$$
V\left(X_{1}, \ldots, X_{d}\right)=\sum_{r=1}^{k} c_{r} X_{i_{1}^{r}} \cdots X_{i_{p_{r}}}=\sum_{r=1}^{k} \bar{c}_{r} X_{i_{p_{r}}^{r}} \ldots X_{i_{p_{1}}^{r}}
$$

- $d \mathbf{X}^{N}=d X_{1}^{N} \cdots d X_{d}^{N}$ the Lebesgue measure on the entries

$$
d X_{i}^{N}=\prod_{k \leq \ell} d \Re\left(X_{i}(k \ell)\right) \prod_{k<\ell} d \Im\left(X_{i}(k \ell)\right)
$$

Question: Does there exists τ_{V} s.t $\forall P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$

$$
\int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) d \mathbb{P}_{N}^{V}\left(\mathbf{X}^{N}\right) \rightarrow \tau_{V}(P)
$$

Outline

One matrix models

Multi-matrix models

Asymptotics of Matrix models

One matrix models

One matrix models and Coulomb gases

If X^{N} is a $N \times N$ Hermitian matrix with distribution

$$
\begin{aligned}
& d \mathbb{P}_{N}^{V}\left(X^{N}\right)=\frac{1}{Z_{N}^{V}} e^{-N \operatorname{Tr} V\left(X^{N}\right)} d X^{N} \\
& \text { Then } \quad X^{N}={ }_{d} U \operatorname{diag}(\lambda) U^{*}
\end{aligned}
$$

where

- U follows the Haar measure on $U(N)$,
- $\operatorname{diag}(\lambda)$ is a diagonal matrix with entries following the Coulomb gas distribution

$$
d Q_{N}^{V}(\lambda)=\frac{1}{Z_{N}^{V}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)} \prod_{1 \leq i \leq N} d \lambda_{i}
$$

with $\beta=2$.

Large deviations and convergence

$$
d Q_{N}^{V}(\lambda)=\frac{1}{Z_{N}^{V}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)} \prod_{1 \leq i \leq N} d \lambda_{i}
$$

Theorem (Voiculescu '93, Ben Arous-G '97, Garcia-Zelada '19) Assume $V(x) \geq(\beta+\epsilon) \ln |x|+C, V$ continuous. The law of $\hat{\mu}_{N}=\frac{1}{N} \sum \delta_{\lambda_{i}}$ satisfies a large deviations principle with speed N^{2} and good rate function $\mathcal{E}_{V}(\mu)=J_{V}(\mu)-\inf J_{V}$ where

$$
J_{V}(\mu)=\frac{1}{2} \iint(V(x)+V(y)-\beta \ln |x-y|) d \mu(x) d \mu(y)
$$

In other words

$$
Q_{N}^{V}\left(\hat{\mu}_{N} \simeq \mu\right) \simeq e^{-N^{2}\left(\mathcal{E}_{V}(\mu)\right)}
$$

\mathcal{E}_{V} achieves its minimum value at a unique probability measure μ_{V} towards which $\hat{\mu}_{N}$ converges almost surely.

Equilibrium measure

The equilibrium measure minimizes

$$
J_{V}(\mu)=\frac{1}{2} \iint(V(x)+V(y)-\beta \ln |x-y|) d \mu(x) d \mu(y)
$$

It is the unique probability measure such that there exists a constant C so that

$$
V(x)-\beta \int \ln |x-y| d \mu(y) \geq C \quad \text { a.s }
$$

with equality μ almost surely.

Equilibrium measure

The equilibrium measure minimizes

$$
J_{V}(\mu)=\frac{1}{2} \iint(V(x)+V(y)-\beta \ln |x-y|) d \mu(x) d \mu(y)
$$

It is the unique probability measure such that there exists a constant C so that

$$
V(x)-\beta \int \ln |x-y| d \mu(y) \geq C \quad \text { a.s }
$$

with equality μ almost surely.It implies that μ satisfies the limiting Dyson-Schwinger equations : for any $f \in C_{b}^{1}$

$$
\frac{\beta}{2} \int \frac{f(x)-f(y)}{x-y} d \mu(x) d \mu(y)=\int f(x) V^{\prime}(x) d \mu(y)
$$

If V has deep wells, solutions have a disconnect support localized around the minimizers of V and the DS equations have a solution for each choice of masses of these connected pieces of the support.

Global fluctuations

$$
d Q_{N}^{V}(\lambda)=\frac{1}{Z_{N}^{V}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)} \prod_{1 \leq i \leq N} d \lambda_{i}
$$

Theorem (Johansson 97, Borot-G 13, Shcherbina 13)
Assume V smooth enough and the density of μv vanishes like a square root at its boundary then

- If the support of μ_{V} is connected, then for smooth enough test functions

$$
N \int f(x) d\left(\hat{\mu}_{N}-\mu_{V}\right)(x) \Rightarrow N\left(m_{f}^{V}, \sigma_{f}^{V}\right)
$$

- If $\operatorname{supp}\left(\mu_{V}\right)=\cup_{1 \leq i \leq n}\left[a_{i}, b_{i}\right], b_{i-1}<a_{i}<b_{i}$, the number of eigenvalues in $\left[a_{i}, b_{i}\right]$ fluctuates like a discrete Gaussian (with mean which may not converge) and, conditionally to these filling fractions, the above holds up to proper recentering.

Idea of the proof: Dyson-Schwinger equations

Principle: "Moments of $\hat{\mu}_{N}$ satisfy equations that can be asymptotically solved"
Example : Let f be a smooth function,

$$
\begin{aligned}
\mathbb{E}\left[\frac{\beta}{2} \int \frac{f(x)-f(y)}{x-y} d \hat{\mu}_{N}(x) d \hat{\mu}_{N}(y)\right] & =\mathbb{E}\left[\int V^{\prime}(x) f(x) d \hat{\mu}_{N}(x)\right] \\
& +\left(\frac{\beta}{2}-1\right) \frac{1}{N} \mathbb{E}\left[\int f^{\prime} d \hat{\mu}_{N}\right] .
\end{aligned}
$$

is a consequence of

$$
\sum_{i=1}^{N} \int \partial_{\lambda_{i}}\left(f\left(\lambda_{i}\right) \frac{d Q_{N}^{V}}{d \lambda}(\lambda)\right) d \lambda=0
$$

Rmk : Another approach is to perform infinitesimal change of variables $\lambda_{i} \rightarrow \lambda_{i}+\frac{1}{N} f\left(\lambda_{i}\right)$ (cf Leblé-Serfaty/ Collins-G-Maurel Segala etc)

Asymptotics of Matrix models

One matrix models

Multi-matrix models

Multi-matrix models

For which potential V there exists τ_{V} s.t $\forall P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$

$$
\frac{1}{Z_{N}^{V}} \int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N} \rightarrow \tau_{V}(P)
$$

- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)\left(\tau_{V}\right.$ is the law of free variables with distribution $\mu V_{i}($ Voiculescu '91)),

Multi-matrix models

For which potential V there exists τ_{V} s.t $\forall P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$

$$
\frac{1}{Z_{N}^{V}} \int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N} \rightarrow \tau_{V}(P)
$$

- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)\left(\tau_{V}\right.$ is the law of free variables with distribution $\mu_{V_{i}}($ Voiculescu '91)),
- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)+\epsilon W(\mathbf{X})$ with V_{i} strictly convex and ϵ small (G-Maurel Segala '06 and Collins-G-MS '09),

Multi-matrix models

For which potential V there exists τ_{V} s.t $\forall P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$

$$
\frac{1}{Z_{N}^{V}} \int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N} \rightarrow \tau_{V}(P)
$$

- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)\left(\tau_{V}\right.$ is the law of free variables with distribution $\mu_{V_{i}}($ Voiculescu '91)),
- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)+\epsilon W(\mathbf{X})$ with V_{i} strictly convex and ϵ small (G-Maurel Segala '06 and Collins-G-MS '09),
- If $V(\mathbf{X})$ is strictly convex i.e $\operatorname{Hess}(\operatorname{Tr} V(\mathbf{X})) \geq c l, c>0$ (G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),

Multi-matrix models

For which potential V there exists τ_{V} s.t $\forall P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$

$$
\frac{1}{Z_{N}^{V}} \int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) e^{-N \operatorname{Tr} V\left(\mathbf{X}^{N}\right)} d \mathbf{X}^{N} \rightarrow \tau_{V}(P)
$$

- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)\left(\tau_{V}\right.$ is the law of free variables with distribution $\mu_{V_{i}}($ Voiculescu '91)),
- If $V(\mathbf{X})=\sum V_{i}\left(X_{i}\right)+\epsilon W(\mathbf{X})$ with V_{i} strictly convex and ϵ small (G-Maurel Segala '06 and Collins-G-MS '09),
- If $V(\mathbf{X})$ is strictly convex i.e $\operatorname{Hess}(\operatorname{Tr} V(\mathbf{X})) \geq c l, c>0$ (G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),
- If $V(\mathbf{X})=V_{1}\left(X_{1}\right)+X_{1} X_{2}+V_{2}\left(X_{2}\right)$ (Mehta '81, Matytsin '97, G-Zeitouni '03, G-Huang '21)

But what can we say about the "unsolvable " commutator model

$$
V_{\beta}(\mathbf{X})=-\beta\left[X_{1}, X_{2}\right]^{2}+V_{1}\left(X_{1}\right)+V_{2}\left(X_{2}\right)
$$

Strategy to study multi-matrix models

 Large deviations are not well understood, see Voiculescu's entropies and Biane-Capitaine-G '03.
Strategy to study multi-matrix models

Large deviations are not well understood, see Voiculescu's entropies and Biane-Capitaine-G '03.

1. Show that the operator norm of the matrices stay bounded with large probability,
2. Deduce that the empirical distribution

$$
\hat{\mu}^{N}(P):=\frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right)
$$

is tight,
3. Show that any limit point of $\hat{\mu}^{N}$ satisfies the Dyson-Schwinger equations,
4. Show that there exists a unique solution to this equation. If V is convex, the first point is deduced from Brascamp Lieb inequality. In perturbative situations, uniqueness follows by showing that uniqueness is stable under small perturbation (when V stay convex) and in convex situations, from uniform convergence of the associated Langevin dynamics.

Matrix models at low temperature(G- Maurel-Segala '22)

- There are sufficient conditions on V such that $\max _{i}\left\|X_{i}^{N}\right\|_{\infty}$ stay bounded with overwhelming probability. This includes

$$
V(\mathbf{X})=\sum c_{i} X_{i}^{2 D}+U(\mathbf{X})
$$

with $c_{i}>0, D \in \mathbb{N}^{*}$ and U of degree bounded by $2 D-1$.

- Under this condition, any limit point τ_{V} of $\hat{\mu}^{N}$ satisfies the Dyson-Schwinger equations.
- If $V=\beta V_{0}+W$, there exists a finite B such that for all k

$$
\tau_{V}\left(\left|\mathcal{D}_{i} V_{0}\right|^{2 k}\right) \leq(B / \beta)^{k}
$$

Kazakov-Zheng '21: Relaxation Bootstrap method for the numerical solution of multi-matrix models. Conjecture : Additional symmetries give uniqueness of solutions to loop equations.

Low temperature expansion (G-Maurel Segala '22) :

 specific models$$
\mathbb{P}_{V_{\beta}}^{N}\left(d \mathbf{X}^{N}\right)=\frac{1}{Z_{V_{\beta}}^{N}} \exp \left\{-N \operatorname{Tr}\left(V_{\beta}\left(\mathbf{X}^{N}\right)\right)\right\} d \mathbf{X}^{N}
$$

and

$$
\tau_{V_{\beta}}^{N}(P)=\int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) d \mathbb{P}_{V_{\beta}}^{N}\left(\mathbf{X}^{N}\right)
$$

- If $V_{\beta}(\mathbf{X})=\beta V(\mathbf{X})+W(\mathbf{X})$ with V minimum at a unique m^{*} with $\operatorname{Hess}(\operatorname{Tr} V)\left(m^{*}\right)>0$. Then for β large enough, we are back to the convex situation.

Low temperature expansion (G-Maurel Segala '22) : specific models

$$
\mathbb{P}_{V_{\beta}}^{N}\left(d \mathbf{X}^{N}\right)=\frac{1}{Z_{V_{\beta}}^{N}} \exp \left\{-N \operatorname{Tr}\left(V_{\beta}\left(\mathbf{X}^{N}\right)\right)\right\} d \mathbf{X}^{N}
$$

and

$$
\tau_{V_{\beta}}^{N}(P)=\int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) d \mathbb{P}_{V_{\beta}}^{N}\left(\mathbf{X}^{N}\right)
$$

- If $V_{\beta}(\mathbf{X})=\beta V(\mathbf{X})+W(\mathbf{X})$ with V minimum at a unique m^{*} with $\operatorname{Hess}(\operatorname{Tr} V)\left(m^{*}\right)>0$. Then for β large enough, we are back to the convex situation.
- If $V_{\beta}(\mathbf{X})=\beta \sum V_{i}\left(X_{i}\right)+\sum_{i} Z_{i}(\mathbf{X})$,
- V_{i} minimum at $\left(x_{j}^{i}\right)_{1 \leq j \leq m_{i}}$ with $V_{i}(x)-V_{i}\left(x_{j}^{i}\right) \simeq c_{j}^{j}\left(x-x_{j}^{i}\right)^{2 k_{j}^{\prime}}$,
- $Z_{i}(X)=\Pi\left(X_{i}-x_{j}^{i}\right) Q_{i}(\mathbf{X})$,
$\tau_{N}^{V_{\beta}}$ converges towards τ_{β} for β large. τ_{∞} is the law of free variables with law $\frac{1}{\sum k_{j}} \sum_{j=1}^{m_{i}} k_{j}^{i} \delta_{x_{i}}$.

The "unsolvable" Commutator model

Given by

$$
\tau_{V_{\beta}}^{N}(P)=\int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) d \mathbb{P}_{V_{\beta}}^{N}\left(\mathbf{X}^{N}\right)
$$

with $V_{\beta}(\mathbf{X})=-\beta\left[X_{1}, X_{2}\right]^{2}+V_{1}\left(X_{1}\right)+V_{2}\left(X_{2}\right)$

- If V_{i} are quadratic, the model was studied by Kazakov, Kostov, Nekrasov '98.

The "unsolvable" Commutator model

Given by

$$
\tau_{V_{\beta}}^{N}(P)=\int \frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right) d \mathbb{P}_{V_{\beta}}^{N}\left(\mathbf{X}^{N}\right)
$$

with $V_{\beta}(\mathbf{X})=-\beta\left[X_{1}, X_{2}\right]^{2}+V_{1}\left(X_{1}\right)+V_{2}\left(X_{2}\right)$

- If V_{i} are quadratic, the model was studied by Kazakov, Kostov, Nekrasov '98.
- If V_{i} minimum at $\left(x_{j}^{i}\right)_{1 \leq j \leq m_{i}}, V_{i}(x)-V_{i}\left(x_{j}^{i}\right) \simeq c_{j}^{i}\left(x-x_{j}^{i}\right)^{2}$, and $c_{j}^{i}>0$. Then

$$
\lim _{\beta \rightarrow \infty} \lim _{N \rightarrow \infty} \tau_{V_{\beta}}^{N}(P)
$$

is the law of two commuting variables with laws

$$
\sum_{j} \frac{\left(c_{j}^{i}\right)^{-1 / 2}}{\sum_{k}\left(c_{k}^{i}\right)^{-1 / 2}} \delta_{x_{j}^{\prime}}, i \in\{1,2\}
$$

The proof uses fine large deviations estimates to fix the filling fractions, based on localisations close to the critical points.

A key tool : estimates by transport.

Lemma

Let $f: \mathbb{R}^{d} \mapsto \mathbb{R}^{+}$be a measurable function with $\int|f(x)| d x<\infty$.
Let $d \mathbb{P}(x)=c f(x) d x$ be a probability measure on \mathbb{R}^{d}. If
$\phi: A \rightarrow \mathbb{R}^{d}$ is a \mathcal{C}^{1} diffeomorphism onto its image then

$$
\mathbb{P}(X \in A) \leqslant \sup _{x \in A} \frac{f(x)}{f \circ \phi(x) J_{\phi}(x)}
$$

where J_{ϕ} is the Jacobian of $\phi: J_{\phi}(x)=\operatorname{det}\left(\partial_{i} \phi_{j}(x)\right)$.
Indeed

$$
\begin{aligned}
\mathbb{P}(X \in A) & =\int_{x \in A} \frac{f(x)}{f \circ \phi(x) J_{\phi}(x)} c f \circ \phi(x) J_{\phi}(x) d x \\
& \leq \sup _{x \in A} \frac{f(x)}{f \circ \phi(x) J_{\phi}(x)} \int_{A} c f \circ \phi(x) J_{\phi}(x) d x
\end{aligned}
$$

A matrix inequality

Lemma
Let \mathbf{X}_{0}^{N} be a d-tuple of $N \times N$ matrices and \mathbf{X}_{t}^{N} solution of $\partial_{t}\left(X_{i}^{N}\right)_{t}=-g_{i}\left(\mathbf{X}_{t}^{N}\right)$ with $\mathbf{X}_{0}^{N}=\mathbf{X}^{N}$. If $g(\mathbf{X})=X_{i_{1}} \cdots X_{i_{k}}$, set $\partial_{i} g(X)=\sum_{j: i_{j}=i} X_{i_{1}} \cdots X_{i_{j-1}} \otimes X_{i_{j+1}} \cdots X_{i_{k}}, \mathcal{D} g(X)=m(\partial g(X))$ with $m(A \otimes B)=B A$. Then
$\left.\mathbb{P}_{N}^{V}\left(\mathbf{X}^{N} \in A\right) \leqslant e^{-i \inf _{X_{0}^{N}}^{N} \in A}\left\{\int_{0}^{t} \sum_{i}\left(\operatorname{Tr} \otimes \operatorname{Tr}\left(\partial_{i} g\left(\mathbf{X}_{s}^{N}\right)\right)-N \operatorname{Tr} \mathcal{D}_{i} V\left(\mathbf{X}_{s}^{N}\right) g\left(X_{s}^{N}\right)\right) d s\right)\right\}$
As a consequence

- If τ_{V} is a limit point of $\frac{1}{N} \operatorname{Tr}\left(P\left(\mathbf{X}^{N}\right)\right)$ it satisfies the limiting Dyson-Schwinger equations : for all $i \in\{1, \ldots, d\}$, allgsmooth

$$
\tau_{V} \otimes \tau_{V}\left(\partial_{i} g\right)=\tau_{V}\left(\mathcal{D}_{i} V g\right)
$$

- The norm $\max _{i}\left\|X_{i}\right\|$ can be bounded if V such that there exists $\eta>0$ and A finite so that

$$
\operatorname{Tr}\left(\sum^{d}\left(X_{j}^{N}\right)^{2 k+1} \mathcal{D}_{j} V\left(\mathbf{X}^{N}\right)\right) \geqslant \operatorname{Tr}\left(\eta \sum^{d}\left(X_{j}^{N}\right)^{2(k+1)}-A \sum^{d}\left(X_{\underline{j}}^{N}\right)^{2 k}\right)_{\dot{c}}
$$

Open Questions

- Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ? Only convergence would have important consequences in entropy theory in free probability.

Open Questions

- Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ? Only convergence would have important consequences in entropy theory in free probability.
- Following Kazakov-Zheng, find natural symmetry conditions to insure uniqueness?

Open Questions

- Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ? Only convergence would have important consequences in entropy theory in free probability.
- Following Kazakov-Zheng, find natural symmetry conditions to insure uniqueness?
- Fluctuations of multi-matrix models are known in perturbative situations. What in general ?
- Understand the commutator model in the large (but not infinite) β case, and in general ?

