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Matrix models

It is the distribution of a d-tuple XN = (XV,..., X}) of N x N
Hermitian matrices

1
dP/\\//(XN) _ FefNTrV(X’V)dXN
N

o TI'(A) = ZA,',',
e V is a self-adjoint polynomial :

k k
V(X1 Xa) = D e Xy X =Y & Xy - Xz
r=1 r=1
o dXN = Xm .- dX} the Lebesgue measure on the entries

Hd% [(k()) Hd\s

k<t k<t
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Matrix models

It is the distribution of a d-tuple XN = (XN, ..., X) of N x N
Hermitian matrices

1
dP/\\//(XN) _ FefNTrV(XN)dXN
N

o TI'(A) = ZA,',',

e V is a self-adjoint polynomial :

k k
V(X1 Xa) = D e Xy X =Y & Xy - Xz
r=1 r=1
o dXN = Xm .- dX} the Lebesgue measure on the entries

= [[ dR(Xi(k0) [T dS(Xi(k0))

k<t k<t
Question : Does there exists 7y s.t VP € C(Xq,..., Xq)

/ %Tr (P(x"’)) dPY(XN) = 1y (P) 77
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Asymptotics of Matrix models

One matrix models
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One matrix models and Coulomb gases

If XN isa N x N Hermitian matrix with distribution

1
dP%(XN) _ Fe—NTrV(X’V)dXN
N

Then XN =4 Udiag(\)U*
where

e U follows the Haar measure on U(N),

e diag(\) is a diagonal matrix with entries following the
Coulomb gas distribution

1 . .
dNN) ==y I Ni—nlfeVERVO) T ax

N 1<i<j<N 1<i<N
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Large deviations and convergence

1 5 NSV vn
dQI\\j()‘):ﬁ H ‘)‘i_)‘j|de N>z VId) H d\;

N 1<i<j<N 1<i<N

Theorem (Voiculescu '93, Ben Arous-G '97, Garcia-Zelada '19)

Assume V(x) > (B +€)In|x| + C, V continuous. The law of
iy = % >0, satisfies a large deviations principle with speed N2
and good rate function Ey (1) = Jv(p) — inf Jy where

/ / — Bin|x — yl)dpu(x)duy)

In other words QY (fiy ~ p) ~ e N (Evm)

Ev achieves its minimum value at a unique probability measure 11y,
towards which [iy converges almost surely.
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Equilibrium measure
The equilibrium measure minimizes

/ / — Binlx — yl)dpu(x)duly)

It is the unique probability measure such that there exists a
constant C so that

V(x) — /’3/ In|x —y|ldu(y) > C as

with equality p almost surely.
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Equilibrium measure
The equilibrium measure minimizes

//’ — Binlx — yl)dpu(x)duly)

It is the unique probability measure such that there exists a
constant C so that

V(X)—/f/ In|x —yldu(y) > C as

with equality p almost surely.It implies that p satisfies the limiting
Dyson-Schwinger equations : for any f € C,}

> [ 2= M aucaant) = [ reaviauty)

If V has deep wells, solutions have a disconnect support localized
around the minimizers of V' and the DS equations have a solution
for each choice of masses of these connected pieces of the support.
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Global fluctuations

1 NS .
dQy(\) = 2V [T —nPe V==Y TT dx
N 1<i<j<N 1<i<N
Theorem (Johansson 97, Borot-G 13, Shcherbina 13)

Assume V' smooth enough and the density of 1\, vanishes like a
square root at its boundary then

e [f the support of p\, is connected, then for smooth enough
test functions

W [ FG9dn =)o) = N(m ).

° /fSUpp(/L\/) = Ulg,-g,,[a,-, b,‘], bi_1 < aj < bj, the number of
eigenvalues in [a;, b;] fluctuates like a discrete Gaussian (with
mean which may not converge) and, conditionally to these
filling fractions, the above holds up to proper recentering.
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Idea of the proof : Dyson-Schwinger equations

Principle : “Moments of iy satisfy equations that can be
asymptotically solved”
Example : Let f be a smooth function,

2[5 [ g maint)] = 2] [ VVEoreadino)

2 X—y

+(§ - 1);/1@[/ fldin] .

is a consequence of

/m( ) 22 (3 )) 0

Rmk : Another approach is to perform infinitesimal change of
variables A\; — A; + & f()\;) (cf Leblé-Serfaty/ Collins-G-Maurel
Segala etc)
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Asymptotics of Matrix models

Multi-matrix models
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Multi-matrix models
For which potential V there exists 7y s.t VP € C(Xy,..., Xy)

1 1 N —NTrV(XN N
ZAI//NTr(P(x ))e XNgXN s 7y (P) 77

o If V(X)=> Vi(Xi)(7v is the law of free variables with
distribution py.(Voiculescu '91)),
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Multi-matrix models
For which potential V there exists 7y s.t VP € C(X1,..., Xy4)

1 1 N —NTrV(XN N
ZAI//NTr<P(X ))e XNgXN s 7y (P) 77

o If V(X)=> Vi(Xi)(7v is the law of free variables with
distribution py.(Voiculescu '91)),

o If V(X) = > Vi(X;) + eW(X) with V; strictly convex and ¢
small (G-Maurel Segala '06 and Collins-G-MS '09),
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Multi-matrix models
For which potential V there exists 7y s.t VP € C(X1,..., Xy4)

1 1. N —NTrV(XN N
ZAI/'/NTI (P(x ))e XNgXN s 7y (P) 77

o If V(X)=> Vi(Xi)(7v is the law of free variables with
distribution py.(Voiculescu '91)),

o If V(X)=> Vi(X;) + eW(X) with V; strictly convex and e
small (G-Maurel Segala '06 and Collins-G-MS '09),

o If V(X) is strictly convex i.e Hess(TrV/(X)) > cl, ¢ >0
(G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),
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Multi-matrix models
For which potential V there exists 7y s.t VP € C(Xy, ..., Xy)

1 1. N —NTrV(XN N
ZAI/'/NTI (P(x ))e XNgXN s 7y (P) 77

o If V(X)=> Vi(Xi)(7v is the law of free variables with
distribution py.(Voiculescu '91)),

o If V(X) = > Vi(X;) + eW(X) with V; strictly convex and ¢
small (G-Maurel Segala '06 and Collins-G-MS '09),

o If V(X) is strictly convex i.e Hess(TrV/(X)) > cl, ¢ >0
(G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),

o If V(X) = Vi(X1) + X1 X2 + Vo(X2) (Mehta '81, Matytsin
'97, G-Zeitouni '03, G-Huang '21)

But what can we say about the "unsolvable " commutator model

Va(X) = —B[X1, Xo]? + Vi(X1) + Va(X2)
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Strategy to study multi-matrix models

Large deviations are not well understood, see Voiculescu's
entropies and Biane-Capitaine-G '03.



One matrix models Multi-matrix models

Strategy to study multi-matrix models
Large deviations are not well understood, see Voiculescu's
entropies and Biane-Capitaine-G '03.

1. Show that the operator norm of the matrices stay bounded
with large probability,
2. Deduce that the empirical distribution

. 1
AN (P) = L TH(P(X"))
is tight,
3. Show that any limit point of iV satisfies the Dyson-Schwinger
equations,
4. Show that there exists a unique solution to this equation.

If V is convex, the first point is deduced from Brascamp Lieb
inequality. In perturbative situations, uniqueness follows by showing
that uniqueness is stable under small perturbation (when V stay
convex) and in convex situations, from uniform convergence of the
associated Langevin dynamics.
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Matrix models at low temperature(G- Maurel-Segala '22)

e There are sufficient conditions on V such that max; || XV
stay bounded with overwhelming probability. This includes

V(X) =) aX?P + U(X)

with ¢; > 0, D € N* and U of degree bounded by 2D — 1.

e Under this condition, any limit point 7 of "V satisfies the
Dyson-Schwinger equations.

o If V =3V, + W, there exists a finite B such that for all k
Tv(|DiVol?) < (B/B)*.

Kazakov-Zheng '21 : Relaxation Bootstrap method for the
numerical solution of multi-matrix models. Conjecture : Additional
symmetries give uniqueness of solutions to loop equations.
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Low temperature expansion ( G-Maurel Segala '22) :
specific models

1
Py, (dX") = o exp{—NTr(V5(XM))}dXN
Vs
and

B (P) = [ T(POX)ar, (xY)

o If V3(X) = BV(X) + W(X) with V minimum at a unique m*
with Hess(TrV)(m*) > 0. Then for 3 large enough, we are
back to the convex situation.
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Low temperature expansion ( G-Maurel Segala '22) :
specific models

1
Py, (dX") = o exp{—NTr(V5(XM))}dXN
Vs
and

B (P) = [ T(POX)ar, (xY)

o If V3(X) = BV(X) + W(X) with V minimum at a unique m*
with Hess(TrV)(m*) > 0. Then for 3 large enough, we are
back to the convex situation.

o If V3(X) =532 Vi(Xi) + >, Zi(X),

o Vi minimum at (x{)1<j<m with Vi(x) — Vi(x/) =~ ¢/(x —><Jf)2kf,
o Zi(X) =[1(X — x))Qi(X),
T,U‘q converges towards 73 for 3 large. 7. is the law of free

; ; 1 mi s
variables with law SK > it kjéx{'
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The "unsolvable” Commutator model
Given by

B (P) = [y T(POX) B, (xY)

with V3(X) = —B[X1, X2]? + V4(X1) + Va(X2)
e If V; are quadratic, the model was studied by Kazakov,
Kostov, Nekrasov '98.
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The "unsolvable” Commutator model
Given by

B (P) = [y T(POX) B, (xY)

with Vg(X) = —[3[X1,X2]2 + Vl(Xl) + V2(X2)
e If V; are quadratic, the model was studied by Kazakov,
Kostov, Nekrasov '98.
e If V; minimum at (x )1§,<m, Vi(x) — Vi(x!) =~ ci(x — xi)?,
and ¢ > 0. Then

li li P
jlﬁm'x: Ninoo va ( )

is the law of two commutlng variables with laws
-1/2

ZZ 1/2X,/€{12}

The proof uses fine large deviations estimates to fix the filling
fractions, based on localisations close to the critical, points.
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A key tool : estimates by transport.

Lemma

Let f : RY — RT be a measurable function with [ |f(x)|dx < oco.
Let dP(x) = cf(x)dx be a probability measure on R?. If

¢ :A—R9 s aCl difffomorphism onto its image then

f(x)
PIX € A) < sup e r 3 Tat)

where J, is the Jacobian of ¢ : Js(x) = det(0;¢;(x)).
Indeed
_ )
P(X €A = /XEA Fo o) o) cf o ¢(x)Jg(x)dx

—f(X) o X X )ax
< sup foqs(x)Jqs(x)/ACf 00 (x)d
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A matrix inequality

Lemma
Let XY/ be a d-tuple of N x N matrices and XY solution of

Oe(XN)e = —gi(XN) with XY = XN . Ifg(X) = Xj -+ X, set
0ig(X) = 2 jimi Xin - Xy @ Xiyyy -+ Xiy,, Dg(X) = m(9g (X))
with m(A® B) = BA. Then

IP,‘\/,(XN c A) <e mfo A{jo (TreTr(0:g(XN)) - NTI'D,-V(XQ’)g(XSN))ds)}.

As a consequence
o If 7y is a limit point of &Tr(P(XN)) it satisfies the limiting
Dyson-Schwinger equations : for all i € {1,...,d}, allgsmooth

v ® Tv(0;g) = 7v(D; Vg)

e The norm max; || Xi|| can be bounded if V such that there

exists 77 > 0 and A finite so that
d d

Tr(Z()(jN)2k+erjV(XN)) > Tr(ni()gN)Z(k+l) _ AZ(XJ'N)2k)'
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Open Questions

e Convergence of multi-matrix models beyond perturbative or
convex cases is open in general. Investigate the phase
transition ?Only convergence would have important
consequences in entropy theory in free probability.
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Open Questions

e Convergence of multi-matrix models beyond perturbative or
convex cases is open in general. Investigate the phase
transition ?Only convergence would have important
consequences in entropy theory in free probability.

e Following Kazakov-Zheng, find natural symmetry conditions
to insure uniqueness ?
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Open Questions

e Convergence of multi-matrix models beyond perturbative or
convex cases is open in general. Investigate the phase
transition ?Only convergence would have important
consequences in entropy theory in free probability.

e Following Kazakov-Zheng, find natural symmetry conditions
to insure uniqueness ?

e Fluctuations of multi-matrix models are known in
perturbative situations. What in general ?

e Understand the commutator model in the large (but not
infinite) (3 case, and in general ?
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