# Asymptotics of Matrix Models at low temperature

Alice GUIONNET

Based on a joint work with E. Maurel Segala

**Coulomb gases conference** 



Post doc positions available, see http://perso.ens-lyon.fr/aguionne/erc/

#### Matrix models

It is the distribution of a *d*-tuple  $\mathbf{X}^N = (X_1^N, \dots, X_d^N)$  of  $N \times N$ Hermitian matrices

$$d\mathbb{P}_N^V(\mathbf{X}^N) = rac{1}{Z_N^V} e^{-N \mathrm{Tr} V(\mathbf{X}^N)} d\mathbf{X}^N$$

•  $\operatorname{Tr}(A) = \sum A_{ii}$ ,

• V is a self-adjoint polynomial :

$$V(X_1,...,X_d) = \sum_{r=1}^k c_r X_{i_1^r} \cdots X_{i_{p_r}^r} = \sum_{r=1}^k \bar{c}_r X_{i_{p_r}^r} \cdots X_{i_{p_1}^r},$$

•  $d\mathbf{X}^N = dX_1^N \cdots dX_d^N$  the Lebesgue measure on the entries

$$dX_i^N = \prod_{k \leq \ell} d\Re(X_i(k\ell)) \prod_{k < \ell} d\Im(X_i(k\ell))$$

#### Matrix models

It is the distribution of a *d*-tuple  $\mathbf{X}^N = (X_1^N, \dots, X_d^N)$  of  $N \times N$ Hermitian matrices

$$d\mathbb{P}_N^V(\mathbf{X}^N) = rac{1}{Z_N^V} e^{-N \mathrm{Tr} V(\mathbf{X}^N)} d\mathbf{X}^N$$

•  $\operatorname{Tr}(A) = \sum A_{ii}$ ,

• V is a self-adjoint polynomial :

$$V(X_1,...,X_d) = \sum_{r=1}^k c_r X_{i_1^r} \cdots X_{i_{p_r}^r} = \sum_{r=1}^k \bar{c}_r X_{i_{p_r}^r} \cdots X_{i_{p_1}^r},$$

•  $d\mathbf{X}^N = dX_1^N \cdots dX_d^N$  the Lebesgue measure on the entries

$$dX_i^N = \prod_{k \leq \ell} d\Re(X_i(k\ell)) \prod_{k < \ell} d\Im(X_i(k\ell))$$

Question : Does there exists  $au_V$  s.t  $orall P \in \mathbb{C}\langle X_1, \dots, X_d 
angle$ 

 $\int \frac{1}{N} \operatorname{Tr} \left( P(\mathbf{X}^N) \right) d\mathbb{P}_N^V(\mathbf{X}^N) \to \tau_V(P)$ ??

#### Outline

#### One matrix models

Multi-matrix models



One matrix models

Multi-matrix models

#### Asymptotics of Matrix models

One matrix models

Multi-matrix models

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### One matrix models and Coulomb gases

If  $X^N$  is a  $N \times N$  Hermitian matrix with distribution

$$d\mathbb{P}_{N}^{V}(X^{N}) = \frac{1}{Z_{N}^{V}}e^{-N\operatorname{Tr} V(X^{N})}dX^{N}$$
  
Then  $X^{N} =_{d} U\operatorname{diag}(\lambda)U^{*}$ 

where

- U follows the Haar measure on U(N),
- $\mathrm{diag}(\lambda)$  is a diagonal matrix with entries following the Coulomb gas distribution

$$dQ_N^V(\lambda) = \frac{1}{Z_N^V} \prod_{1 \le i < j \le N} |\lambda_i - \lambda_j|^\beta e^{-N \sum_{i=1}^N V(\lambda_i)} \prod_{1 \le i \le N} d\lambda_i$$

with  $\beta = 2$ .

#### Large deviations and convergence

$$dQ_N^V(\lambda) = \frac{1}{Z_N^V} \prod_{1 \le i < j \le N} |\lambda_i - \lambda_j|^\beta e^{-N \sum_{i=1}^N V(\lambda_i)} \prod_{1 \le i \le N} d\lambda_i$$

Theorem (Voiculescu '93, Ben Arous-G '97, Garcia-Zelada '19) Assume  $V(x) \ge (\beta + \epsilon) \ln |x| + C$ , V continuous. The law of  $\hat{\mu}_N = \frac{1}{N} \sum \delta_{\lambda_i}$  satisfies a large deviations principle with speed N<sup>2</sup> and good rate function  $\mathcal{E}_V(\mu) = J_V(\mu) - \inf J_V$  where

$$J_{V}(\mu) = \frac{1}{2} \int \int (V(x) + V(y) - \beta \ln |x - y|) d\mu(x) d\mu(y)$$

In other words  $Q_N^V(\hat{\mu}_N \simeq \mu) \simeq e^{-N^2(\mathcal{E}_V(\mu))}$  .

 $\mathcal{E}_V$  achieves its minimum value at a unique probability measure  $\mu_V$  towards which  $\hat{\mu}_N$  converges almost surely.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Equilibrium measure

The equilibrium measure minimizes

$$J_{V}(\mu) = \frac{1}{2} \int \int (V(x) + V(y) - \beta \ln |x - y|) d\mu(x) d\mu(y)$$

It is the unique probability measure such that there exists a constant C so that

$$V(x) - eta \int \ln |x-y| d\mu(y) \geq C$$
 a.s

with equality  $\mu$  almost surely.

#### Equilibrium measure

The equilibrium measure minimizes

$$J_V(\mu) = \frac{1}{2} \int \int (V(x) + V(y) - \beta \ln |x - y|) d\mu(x) d\mu(y)$$

It is the unique probability measure such that there exists a constant C so that

$$V(x) - eta \int \ln |x-y| d\mu(y) \geq C$$
 a.s

with equality  $\mu$  almost surely. It implies that  $\mu$  satisfies the limiting Dyson-Schwinger equations : for any  $f \in C_b^1$ 

$$\frac{\beta}{2}\int \frac{f(x)-f(y)}{x-y}d\mu(x)d\mu(y) = \int f(x)V'(x)d\mu(y)$$

If V has deep wells, solutions have a disconnect support localized around the minimizers of V and the DS equations have a solution for each choice of masses of these connected pieces of the support.

#### **Global fluctuations**

$$dQ_N^V(\lambda) = \frac{1}{Z_N^V} \prod_{1 \le i < j \le N} |\lambda_i - \lambda_j|^\beta e^{-N \sum_{i=1}^N V(\lambda_i)} \prod_{1 \le i \le N} d\lambda_i$$

Theorem (Johansson 97, Borot-G 13, Shcherbina 13) Assume V smooth enough and the density of  $\mu_V$  vanishes like a square root at its boundary then

• If the support of  $\mu_V$  is connected, then for smooth enough test functions

$$N\int f(x)d(\hat{\mu}_N-\mu_V)(x) \Rightarrow N(m_f^V,\sigma_f^V).$$

If supp(μ<sub>V</sub>) = ∪<sub>1≤i≤n</sub>[a<sub>i</sub>, b<sub>i</sub>], b<sub>i-1</sub> < a<sub>i</sub> < b<sub>i</sub>, the number of eigenvalues in [a<sub>i</sub>, b<sub>i</sub>] fluctuates like a discrete Gaussian (with mean which may not converge) and, conditionally to these filling fractions, the above holds up to proper recentering.

#### Idea of the proof : Dyson-Schwinger equations **Principle :** "Moments of $\hat{\mu}_N$ satisfy equations that can be asymptotically solved" **Example :** Let f be a smooth function,

$$\mathbb{E}\left[\frac{\beta}{2}\int \frac{f(x)-f(y)}{x-y}d\hat{\mu}_{N}(x)d\hat{\mu}_{N}(y)\right] = \mathbb{E}\left[\int V'(x)f(x)d\hat{\mu}_{N}(x)\right] + \left(\frac{\beta}{2}-1\right)\frac{1}{N}\mathbb{E}\left[\int f'd\hat{\mu}_{N}\right].$$

is a consequence of

$$\sum_{i=1}^{N} \int \partial_{\lambda_{i}} \left( f(\lambda_{i}) \frac{dQ_{N}^{V}}{d\lambda}(\lambda) \right) d\lambda = 0$$

**Rmk** : Another approach is to perform infinitesimal change of variables  $\lambda_i \rightarrow \lambda_i + \frac{1}{N} f(\lambda_i)$  (cf Leblé-Serfaty/ Collins-G-Maurel Segala etc) 

One matrix models

Multi-matrix models

#### Asymptotics of Matrix models

One matrix models

Multi-matrix models

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

### Multi-matrix models

For which potential V there exists  $\tau_V$  s.t  $\forall P \in \mathbb{C}\langle X_1, \dots, X_d \rangle$ 

$$\frac{1}{Z_N^V} \int \frac{1}{N} \operatorname{Tr} \left( P(\mathbf{X}^N) \right) e^{-N \operatorname{Tr} V(\mathbf{X}^N)} d\mathbf{X}^N \to \tau_V(P) \qquad ??$$

If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>)(τ<sub>V</sub> is the law of free variables with distribution μ<sub>Vi</sub>(Voiculescu '91)),

### Multi-matrix models

For which potential V there exists  $\tau_V$  s.t  $\forall P \in \mathbb{C}\langle X_1, \dots, X_d \rangle$  $\frac{1}{\sqrt{1 - 1}} \int \frac{1}{\sqrt{1 - 1}} \sum_{k=1}^{\infty} \left( P(\mathbf{x}^{N_k}) \right) e^{-N \operatorname{Tr} V(\mathbf{x}^{N_k})} d\mathbf{x}^{N_k} = - \langle P \rangle$ 22

$$\overline{Z_N^V} \int \overline{N} \operatorname{Tr} \left( P(\mathbf{X}^N) \right) e^{-N \operatorname{HV}(\mathbf{X}^N)} d\mathbf{X}^N \to \tau_V(P) \qquad ??$$

- If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>)(τ<sub>V</sub> is the law of free variables with distribution μ<sub>Vi</sub>(Voiculescu '91)),
- If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>) + εW(X) with V<sub>i</sub> strictly convex and ε small (G-Maurel Segala '06 and Collins-G-MS '09),

### Multi-matrix models

For which potential V there exists  $\tau_V$  s.t  $\forall P \in \mathbb{C}\langle X_1, \dots, X_d \rangle$  $\frac{1}{Z_V^V} \int \frac{1}{N} \operatorname{Tr} \left( P(\mathbf{X}^N) \right) e^{-N \operatorname{Tr} V(\mathbf{X}^N)} d\mathbf{X}^N \to \tau_V(P) \qquad ??$ 

• If 
$$V(\mathbf{X}) = \sum V_i(X_i)(\tau_V)$$
 is the law of free variables with

- If  $V(\mathbf{X}) = \sum V_i(X_i)(\tau_V)$  is the law of free variables with distribution  $\mu_{V_i}$  (Voiculescu '91)),
- If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>) + εW(X) with V<sub>i</sub> strictly convex and ε small (G-Maurel Segala '06 and Collins-G-MS '09),
- If V(X) is strictly convex i.e Hess(TrV(X)) ≥ cl, c > 0 (G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),

### Multi-matrix models

For which potential V there exists  $\tau_V$  s.t  $\forall P \in \mathbb{C}\langle X_1, \dots, X_d \rangle$ 

$$\frac{1}{Z_N^V} \int \frac{1}{N} \operatorname{Tr} \left( P(\mathbf{X}^N) \right) e^{-N \operatorname{Tr} V(\mathbf{X}^N)} d\mathbf{X}^N \to \tau_V(P) \qquad ??$$

- If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>)(τ<sub>V</sub> is the law of free variables with distribution μ<sub>Vi</sub>(Voiculescu '91)),
- If V(X) = ∑ V<sub>i</sub>(X<sub>i</sub>) + εW(X) with V<sub>i</sub> strictly convex and ε small (G-Maurel Segala '06 and Collins-G-MS '09),
- If V(X) is strictly convex i.e Hess(TrV(X)) ≥ cl, c > 0 (G-Shlyaktenko '09, '14, Dabrowski '16, Jekel '19),
- If  $V(\mathbf{X}) = V_1(X_1) + X_1X_2 + V_2(X_2)$  (Mehta '81, Matytsin '97, G-Zeitouni '03, G-Huang '21)

But what can we say about the "unsolvable " commutator model

$$V_{\beta}(\mathbf{X}) = -\beta [X_1, X_2]^2 + V_1(X_1) + V_2(X_2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Strategy to study multi-matrix models

Large deviations are not well understood, see Voiculescu's entropies and Biane-Capitaine-G '03.

#### Strategy to study multi-matrix models

Large deviations are not well understood, see Voiculescu's entropies and Biane-Capitaine-G '03.

- 1. Show that the operator norm of the matrices stay bounded with large probability,
- 2. Deduce that the empirical distribution

$$\hat{\mu}^{N}(P) := \frac{1}{N} \operatorname{Tr}(P(\mathbf{X}^{N}))$$

is tight,

- 3. Show that any limit point of  $\hat{\mu}^N$  satisfies the Dyson-Schwinger equations,
- 4. Show that there exists a unique solution to this equation.

If V is convex, the first point is deduced from Brascamp Lieb inequality. In perturbative situations, uniqueness follows by showing that uniqueness is stable under small perturbation (when V stay convex) and in convex situations, from uniform convergence of the associated Langevin dynamics.

#### Matrix models at low temperature(G- Maurel-Segala '22)

 There are sufficient conditions on V such that max<sub>i</sub> ||X<sub>i</sub><sup>N</sup> ||<sub>∞</sub> stay bounded with overwhelming probability. This includes

$$V(\mathbf{X}) = \sum c_i X_i^{2D} + U(\mathbf{X})$$

with  $c_i > 0$ ,  $D \in \mathbb{N}^*$  and U of degree bounded by 2D - 1.

- Under this condition, any limit point  $\tau_V$  of  $\hat{\mu}^N$  satisfies the Dyson-Schwinger equations.
- If  $V = \beta V_0 + W$ , there exists a finite B such that for all k

 $\tau_V(|\mathcal{D}_i V_0|^{2k}) \leq (B/\beta)^k.$ 

Kazakov-Zheng '21 : Relaxation Bootstrap method for the numerical solution of multi-matrix models. Conjecture : Additional symmetries give uniqueness of solutions to loop equations.

# Low temperature expansion (G–Maurel Segala '22) : specific models

$$\mathbb{P}_{V_{eta}}^{N}(d\mathbf{X}^{N})=rac{1}{Z_{V_{eta}}^{N}}\exp\{-N\mathrm{Tr}(V_{eta}(\mathbf{X}^{N}))\}d\mathbf{X}^{N}$$

and

$$au_{V_{eta}}^{N}(P) = \int rac{1}{N} \mathrm{Tr}(P(\mathbf{X}^{N})) d\mathbb{P}_{V_{eta}}^{N}(\mathbf{X}^{N})$$

If V<sub>β</sub>(X) = βV(X) + W(X) with V minimum at a unique m<sup>\*</sup> with Hess(TrV)(m<sup>\*</sup>) > 0. Then for β large enough, we are back to the convex situation.

# Low temperature expansion (G–Maurel Segala '22) : specific models

$$\mathbb{P}_{V_{eta}}^{N}(d\mathbf{X}^{N})=rac{1}{Z_{V_{eta}}^{N}}\exp\{-N\mathrm{Tr}(V_{eta}(\mathbf{X}^{N}))\}d\mathbf{X}^{N}$$

and

$$au_{V_{eta}}^{N}(P) = \int rac{1}{N} \mathrm{Tr}(P(\mathbf{X}^{N})) d\mathbb{P}_{V_{eta}}^{N}(\mathbf{X}^{N})$$

- If V<sub>β</sub>(X) = βV(X) + W(X) with V minimum at a unique m<sup>\*</sup> with Hess(TrV)(m<sup>\*</sup>) > 0. Then for β large enough, we are back to the convex situation.
- If  $V_{\beta}(\mathbf{X}) = \beta \sum V_i(X_i) + \sum_i Z_i(\mathbf{X})$ ,
  - $V_i$  minimum at  $(x_j^i)_{1 \le j \le m_i}$  with  $V_i(x) V_i(x_j^i) \simeq c_j^i (x x_j^i)^{2k_j^i}$ ,

• 
$$Z_i(X) = \prod (X_i - x_j^i) Q_i(\mathbf{X}),$$

 $\tau_N^{V_\beta}$  converges towards  $\tau_\beta$  for  $\beta$  large.  $\tau_\infty$  is the law of free variables with law  $\frac{1}{\sum k_j^i} \sum_{j=1}^{m_i} k_j^j \delta_{x_i^j}$ .

## The "unsolvable" Commutator model Given by

$$\tau_{V_{\beta}}^{N}(P) = \int \frac{1}{N} \operatorname{Tr}(P(\mathbf{X}^{N})) d\mathbb{P}_{V_{\beta}}^{N}(\mathbf{X}^{N})$$

with  $V_{\beta}(\mathbf{X}) = -\beta [X_1, X_2]^2 + V_1(X_1) + V_2(X_2)$ 

• If V<sub>i</sub> are quadratic, the model was studied by Kazakov, Kostov, Nekrasov '98.

## The "unsolvable" Commutator model Given by

$$au_{V_{eta}}^{N}(P) = \int rac{1}{N} \mathrm{Tr}(P(\mathbf{X}^{N})) d\mathbb{P}_{V_{eta}}^{N}(\mathbf{X}^{N})$$

with  $V_{\beta}(\mathbf{X}) = -\beta [X_1, X_2]^2 + V_1(X_1) + V_2(X_2)$ 

- If V<sub>i</sub> are quadratic, the model was studied by Kazakov, Kostov, Nekrasov '98.
- If  $V_i$  minimum at  $(x_j^i)_{1\leq j\leq m_i}$ ,  $V_i(x) V_i(x_j^i) \simeq c_j^i(x-x_j^i)^2$ , and  $c_j^i > 0$ . Then

 $\lim_{\beta\to\infty}\lim_{N\to\infty}\tau^N_{V_\beta}(P)$ 

is the law of two commuting variables with laws

$$\sum_j rac{(c_j^i)^{-1/2}}{\sum_k (c_k^i)^{-1/2}} \delta_{x_j^i}, i \in \{1,2\}\,.$$

The proof uses fine large deviations estimates to fix the filling fractions, based on localisations close to the critical points.

#### A key tool : estimates by transport.

#### Lemma

Let  $f : \mathbb{R}^d \mapsto \mathbb{R}^+$  be a measurable function with  $\int |f(x)| dx < \infty$ . Let  $d\mathbb{P}(x) = cf(x) dx$  be a probability measure on  $\mathbb{R}^d$ . If  $\phi : A \to \mathbb{R}^d$  is a  $C^1$  diffeomorphism onto its image then

$$\mathbb{P}(X \in A) \leqslant \sup_{x \in A} rac{f(x)}{f \circ \phi(x) J_{\phi}(x)}$$

where  $J_{\phi}$  is the Jacobian of  $\phi$  :  $J_{\phi}(x) = \det(\partial_i \phi_j(x))$ . Indeed

$$\mathbb{P}(X \in A) = \int_{x \in A} \frac{f(x)}{f \circ \phi(x) J_{\phi}(x)} cf \circ \phi(x) J_{\phi}(x) dx$$
  
$$\leq \sup_{x \in A} \frac{f(x)}{f \circ \phi(x) J_{\phi}(x)} \int_{A} cf \circ \phi(x) J_{\phi}(x) dx$$

#### A matrix inequality

#### Lemma

Let  $\mathbf{X}_{0}^{N}$  be a d-tuple of  $N \times N$  matrices and  $\mathbf{X}_{t}^{N}$  solution of  $\partial_{t}(X_{i}^{N})_{t} = -g_{i}(\mathbf{X}_{t}^{N})$  with  $\mathbf{X}_{0}^{N} = \mathbf{X}^{N}$ . If  $g(\mathbf{X}) = X_{i_{1}} \cdots X_{i_{k}}$ , set  $\partial_{i}g(X) = \sum_{j:i_{j}=i} X_{i_{1}} \cdots X_{i_{j-1}} \otimes X_{i_{j+1}} \cdots X_{i_{k}}$ ,  $\mathcal{D}g(X) = m(\partial g(X))$ with  $m(A \otimes B) = BA$ . Then

 $\mathbb{P}_{N}^{V}(\mathbf{X}^{N} \in A) \leqslant e^{-\inf_{\mathbf{X}_{0}^{N} \in A} \{\int_{0}^{t} \sum_{i} (\operatorname{Tr} \otimes \operatorname{Tr}(\partial_{i}g(\mathbf{X}_{s}^{N})) - N \operatorname{Tr}\mathcal{D}_{i}V(\mathbf{X}_{s}^{N})g(X_{s}^{N}))ds)\}}$ 

As a consequence

 If τ<sub>V</sub> is a limit point of <sup>1</sup>/<sub>N</sub>Tr(P(X<sup>N</sup>)) it satisfies the limiting Dyson-Schwinger equations : for all i ∈ {1,...,d}, allgsmooth

 $\tau_V \otimes \tau_V(\partial_i g) = \tau_V(\mathcal{D}_i V g)$ 

• The norm  $\max_i ||X_i||$  can be bounded if V such that there exists  $\eta > 0$  and A finite so that

 $\operatorname{Tr}(\sum_{i=1}^{d} (X_{j}^{N})^{2k+1} \mathcal{D}_{j} V(\mathbf{X}^{N})) \geq \operatorname{Tr}(\eta \sum_{i=1}^{d} (X_{j}^{N})^{2(k+1)} - A \sum_{i=1}^{d} (X_{\underline{y}}^{N})^{2k})_{\mathcal{O}(\mathcal{O})}$ 

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### **Open Questions**

• Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ?Only convergence would have important consequences in entropy theory in free probability.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### **Open Questions**

- Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ?Only convergence would have important consequences in entropy theory in free probability.
- Following Kazakov-Zheng, find natural symmetry conditions to insure uniqueness?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### **Open Questions**

- Convergence of multi-matrix models beyond perturbative or convex cases is open in general. Investigate the phase transition ?Only convergence would have important consequences in entropy theory in free probability.
- Following Kazakov-Zheng, find natural symmetry conditions to insure uniqueness?
- Fluctuations of multi-matrix models are known in perturbative situations. What in general?
- Understand the commutator model in the large (but not infinite)  $\beta$  case, and in general?