Local statistics in the 1d Coulomb gas: extremes, gaps and full-counting statistics

Grégory Schehr
Laboratoire de Physique Théorique et Hautes Energies, CNRS - Sorbonne Université

Coulomb gases and universality Paris, 5-9 Dec. 2022

in collaboration with

- Abhishek Dhar (ICTS-TIFR, Bangalore)
- Ana Flack (LPTMS, Univ. Paris-Saclay)
- Anupam Kundu (ICTS-TIFR, Bangalore)
- Satya N. Majumdar (LPTMS, Univ. Paris-Saclay)
- Sanjib Sabhapandit (RRI, Bangalore)

The 1d Coulomb gas: a classical stat. mech. problem

- A. Lenard, Exact Statistical Mechanics of a OneDimensional system with Coulomb Forces, (1961)
- S. Prager, The One-Dimensional Plasma, (1962)
- R. J. Baxter, Statistical mechanics of a 1d Coulomb system with a uniform charge background, (1963)
- H. Kunz, The 1d classical electron gas, (1974)
- M. Aizenman, P. A. Martin, Structure of cibbs states of one dimensional Coulomb systems, (1980)

Local statistics in the 1d Coulomb gas: extremes, gaps and full-counting statistics

- A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. S., Exact extremal stalistics in the classical 1d Coulomb gas, Phys. Rev. Lett. 119, 060601 (2017)
- A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. S., Extreme statistics and index distribution in the classical 1d Coulomb gas, J. Phys. A: Math. Theor. 51 295001 (2018)
- A. Flack, S. N. Majumdar, G. S., Gap probabiliky and full counting stakistics in the one dimensional onecomponent plasma, J. Stat. Mech. (2022) 053211

One dimensional (neutral) plasma

$N+\mathrm{ve}$ charges $+q$ (with positions $x_{i}^{\prime} \mathrm{s}$)
N-ve charges $-q$ (with positions $y_{i}^{\prime} s$)

$$
\text { on }[-L, L]
$$

- Energy of a configuration
with $\quad \gamma \propto q^{2}$

$$
E\left[\left\{x_{i}\right\},\left\{y_{i}\right\}\right]=-\gamma \sum_{i \neq j}\left|x_{i}-x_{j}\right|-\gamma \sum_{i \neq j}\left|y_{i}-y_{j}\right|+\gamma \sum_{i \neq j}\left|x_{i}-y_{j}\right|
$$

1d Coulomb interaction

- Treat the negative particles as a uniform background with a density $\rho_{0}=N /(2 L)$ over $[-L, L]$

$$
\gamma \sum_{i \neq j}\left|x_{i}-y_{j}\right| \simeq \gamma \rho_{0} \sum_{i=1}^{N} \int_{-L}^{L}\left|x_{i}-y\right| d y=\gamma \rho_{0} \sum_{i=1}^{N}\left(L^{2}+x_{i}^{2}\right)
$$

effective harmonic potential

- Different types of backgrounds have recently been considered in Chafaï, Garcia-Zelada, Jung (2021)

One dimensional jellium model on the line $L \rightarrow \infty$

- Effective energy for the +ve charges

$$
E\left[\left\{x_{i}\right\}\right]=A \sum_{i=1}^{N} x_{i}^{2}-B \sum_{i \neq j}\left|x_{i}-x_{j}\right| \quad \text { with } \quad A, B=\mathcal{O}(1)
$$

(c) Typical scale $L_{N}: \quad x_{i}=L_{N} \tilde{x}_{i} \quad$ with $\quad \tilde{x}_{i}=O(1)$

$$
A \sum_{i=1}^{N} x_{i}^{2} \sim A N L_{N}^{2} \quad \text { vs } \quad B \sum_{i \neq j}\left|x_{i}-x_{j}\right| \sim B N^{2} L_{N}
$$

(2) Dimensionless energy, setting $A=1, B=\alpha$

$$
\beta E\left[\left\{x_{i}\right\}\right]=\frac{N^{2}}{2} \sum_{i=1}^{N} \tilde{x}_{i}^{2}-\alpha N \sum_{i \neq j}\left|\tilde{x}_{i}-\tilde{x}_{j}\right|
$$

One-dimensional jellium

- One-dimensional jellium model (1d-one component plasma)

$$
\begin{gathered}
P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z_{N}} \exp \left[-\beta E\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right] \\
\beta E\left[\left\{x_{i}\right\}\right]=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|
\end{gathered}
$$

1d Coulomb interaction

One-dimensional jellium: average density

$$
\beta E\left(x_{1}, \cdots, x_{N}\right)=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|
$$

- Average density: $\quad \rho_{N}(x)=\frac{1}{N} \sum_{i=1}^{N}\left\langle\delta\left(x-x_{i}\right)\right\rangle$
- Order the positions: $x_{(1)}<x_{(2)}<\cdots<x_{(N)}$

$$
\begin{aligned}
\beta E\left(\left\{x_{i}\right\}\right) & =\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-2 \alpha N \sum_{i>j}\left(x_{(i)}-x_{(j)}\right) \\
& =\frac{N^{2}}{2} \sum_{i=1}^{N} x_{(i)}^{2}-2 \alpha N \sum_{i=1}^{N}(2 i-N-1) x_{(i)} \\
& =\frac{N^{2}}{2} \sum_{i=1}^{N}\left(x_{(i)}-\frac{2 \alpha}{N}(2 i-N-1)\right)^{2}+C_{N}(\alpha)
\end{aligned}
$$

One-dimensional Coulomb gas: average density

- Order the positions:

$$
x_{(1)}<x_{(2)}<\cdots<x_{(N)}
$$

$$
\begin{aligned}
\beta E\left(x_{1}, \cdots, x_{N}\right) & =\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right| \\
& =\frac{N^{2}}{2} \sum_{i=1}^{N}\left(x_{(i)}-\frac{2 \alpha}{N}(2 i-N-1)\right)^{2}+C_{N}(\alpha)
\end{aligned}
$$

- Equilibrium positions: $x_{(i)}^{*}=\frac{2 \alpha}{N}(2 i-N-1) \quad, \quad i=1,2, \cdots, N$
\Longrightarrow equispaced positions
leftmost $\quad x_{(1)}^{*}=-2 \alpha\left(1-\frac{1}{N}\right)$
rightmost $\quad x_{(N)}^{*}=2 \alpha\left(1-\frac{1}{N}\right)$

One-dimensional Coulomb gas: average density

$$
\beta E\left(x_{1}, \cdots, x_{N}\right)=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|
$$

- Average density of particles

$$
\begin{aligned}
& \rho_{N}(x)=\frac{1}{N} \sum_{i=1}^{N}\left\langle\delta\left(x-x_{i}\right)\right\rangle \\
& \underset{N \rightarrow \infty}{\longrightarrow} \rho_{\infty}(x)=\frac{1}{4 \alpha},|x| \leq 2 \alpha
\end{aligned}
$$

- Quite generic for d-dimensional Coulomb gas + harmonic potential (see e.g. the Ginibre ensemble in $d=2$)

One-dimensional Coulomb gas

$$
\beta E\left(x_{1}, \cdots, x_{N}\right)=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|
$$

What about local fluctuations?

- Fluctuations of the position of the rightmost particle

This talk \triangleright Distribution of the gap between two particles

- Full counting statistics

Local fluctuations at the edge of the one-dimensional Coulomb gas

- A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. S., Phys. Rev. Lett. 119, 060601 (2017)
- A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, G. S., J. Phys. A: Math. Theor. 51295001 (2018)

Motivations and background: edge universality for Gaussian beta-ensembles of RMT

- Dyson 's log-gas at temperature β (Gaussian β-ensemble)

$$
P\left(\lambda_{1}, \cdots, \lambda_{N}\right)=\frac{1}{Z_{N}} \exp \left[-\beta\left(N \sum_{i=1}^{N} \frac{x_{i}^{2}}{2}-\frac{1}{2} \sum_{i \neq j} \ln \left|\lambda_{i}-\lambda_{j}\right|\right)\right]
$$

- Mean density of eigenvalues

$$
\begin{aligned}
\rho_{N}(\lambda) & =\frac{1}{N} \sum_{i=1}^{N}\left\langle\delta\left(\lambda-\lambda_{i}\right)\right\rangle \\
& \longrightarrow \rho_{\mathrm{SC}}(\lambda)=\frac{1}{\pi} \sqrt{2-\lambda^{2}}
\end{aligned}
$$

Tracy-Widom distributions for $\lambda_{\max }$

$$
\lambda_{\max }=\max _{1 \leq i \leq N} \lambda_{i}
$$

- In the limit $N \rightarrow \infty, \lambda_{\max } \rightarrow \sqrt{2}$
- Tracy-Widom distributions and their generalizations

$$
\operatorname{Pr} .\left[\lambda_{\max } \leq w\right] \longrightarrow \mathcal{F}_{\beta}\left(\sqrt{2}(w-\sqrt{2}) N^{2 / 3}\right)
$$

Tracy \& Widom '94

Tracy-Widom distributions for $\lambda_{\max }$

- For $\beta=1,2,4$ explicit expression in terms of a Painlevé transcendent

Tracy \& Widom '94, '96 $q^{\prime \prime}(x)=x q(x)+2 q^{3}(x), q(x) \underset{x \rightarrow \infty}{\sim} \operatorname{Ai}(\mathrm{x})$
For instance for $\beta=2: \quad \mathcal{F}_{2}(x)=\exp \left[-\int_{x}^{\infty}(s-x) q^{2}(s) d s\right]$

- For generic values of $\beta>0$: stochastic Airy operator Dumitriu, Edelman '02
Ramirez, Rider, Virag '11

Motivations and background: edge universality for beta-ensembles of RMT

- Dyson 's log-gas at temperature β

$$
P\left(\lambda_{1}, \cdots, \lambda_{N}\right)=\frac{1}{Z_{N}} \exp \left[-\beta\left(N \sum_{i=1}^{N} V\left(\lambda_{i}\right)-\frac{1}{2} \sum_{i \neq j} \ln \left|\lambda_{i}-\lambda_{j}\right|\right)\right]
$$

- Edge properties are universal for a wide class of confining potentials $V(\lambda)$ such that the density has a finite support and vanishes as a square-root at the edge (《 regular » potential)

Krishnapur, Rider, Virag '13
Bourgade, Erdös, Yau '14

Q: what happens if the interactions are changed

Back to the one-dimensional jellium

- One-dimensional jellium model (1d-one component plasma)

$$
\begin{gathered}
P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z_{N}} \exp \left[-\beta E\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right] \\
\beta E\left[\left\{x_{i}\right\}\right]=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|
\end{gathered}
$$

1d Coulomb interaction

1d Coulomb gas: fluctuations at the edge

$$
x_{\max }=\max _{1 \leq i \leq N} x_{i}
$$

- In the limit $N \rightarrow \infty, x_{\max } \rightarrow 2 \alpha$
- The typical scale of fluctuations of $x_{\max }$ can be obtained via

$$
\int_{x_{\max }}^{2 \alpha} \rho_{\infty}(x) d x \sim \frac{1}{N} \Longrightarrow 2 \alpha-x_{\max }=\mathcal{O}(1 / N)
$$

1d Coulomb gas: typical fluctuations of $x_{\max }$

$$
Q_{N}(w)=\mathbb{P}\left(x_{\max }<w\right)
$$

- Limiting form for large N, with $N(w-2 \alpha)=z=\mathcal{O}(1)$

$$
Q_{N}(w) \underset{N \rightarrow \infty}{\longrightarrow} F_{\alpha}(z+2 \alpha)
$$

A. Dhar et al. (2017), (2018)

"eigenvalue"

where

$$
\frac{d F_{\alpha}(x)}{d x}=A(\alpha) e^{-x^{2} / 2} F_{\alpha}(x+4 \alpha)
$$

with boundary $\lim _{x \rightarrow-\infty} F_{\alpha}(x)=0$
see also Baxter (1963) conditions:

$$
\lim _{x \rightarrow+\infty} F_{\alpha}(x)=1 \quad \text { and } \quad F_{\alpha}(x) \geq 0, \forall x
$$

1d Coulomb gas: typical fluctuations of $x_{\max }$

$$
Q_{N}(w)=\mathbb{P}\left(x_{\max }<w\right)
$$

- Limiting form for large N, with $N(w-2 \alpha)=z=\mathcal{O}(1)$

$$
Q_{N}(w) \underset{N \rightarrow \infty}{\longrightarrow} F_{\alpha}(z+2 \alpha)
$$

A. Dhar et al. (2017), (2018)
eigenvalue
where

$$
\frac{d F_{\alpha}(x)}{d x}=A(\alpha) e^{-x^{2} / 2} F_{\alpha}(x+4 \alpha)
$$

asymptotics $\quad F_{\alpha}^{\prime}(x) \sim \begin{cases}\exp \left[-|x|^{3} /(24 \alpha)+\mathcal{O}\left(x^{2}\right)\right], & x \rightarrow-\infty \\ \exp \left[-x^{2} / 2+\mathcal{O}(x)\right], & x \rightarrow+\infty\end{cases}$

1d Coulomb gas: typical fluctuations of $x_{\max }$

Numerical simulations

A. Dhar et al. (2017), (2018)

Comparison with Tracy-Widom (TW) distributions

Tails of the TW distributions

$$
\mathcal{F}_{\beta}^{\prime}(x) \approx\left\{\begin{array}{l}
\exp \left[-\frac{\beta}{24}|x|^{3}\right], x \rightarrow-\infty \\
\exp \left[-\frac{2 \beta}{3} x^{3 / 2}\right], x \rightarrow+\infty
\end{array}\right.
$$

- By contrast our results for the 1d-Coulomb gas yield

$$
F_{\alpha}^{\prime}(x) \sim \begin{cases}\exp \left[-|x|^{3} /(24 \alpha)+\mathcal{O}\left(x^{2}\right)\right], & x \rightarrow-\infty \\ \exp \left[-x^{2} / 2+\mathcal{O}(x)\right], & x \rightarrow+\infty\end{cases}
$$

the left tail is < Tracy-Widom like » while the right tail is different

- One can also consider different background charges, which modifies the right tail Chafaï, Garcia-Zelada, Jung (20121)

Id Coulomb gas: large deviations of $x_{\max }$

What about the fluctuations for $|2 \alpha-w| \gg 1 / N$?

$$
Q_{N}(w) \sim \begin{cases}e^{-N^{3} \Phi-(w)+\mathcal{O}\left(N^{2}\right)}, & 0<2 \alpha-w=\mathcal{O}(1) \\ F_{\alpha}[N(w-2 \alpha)+2 \alpha] & , \quad|2 \alpha-w|=\mathcal{O}(1 / N) \\ 1-e^{-N^{2} \phi_{+}(w)+\mathcal{O}(N)} & , \quad 0<w-2 \alpha=\mathcal{O}(1)\end{cases}
$$

A. Dhar et al. (2017), (2018), see also S. N. Majumdar 's talk

1d Coulomb gas: large deviations of $x_{\max }$

$$
Q_{N}(w) \sim \begin{cases}e^{-N^{3} \Phi_{-}(w)+\mathcal{O}\left(N^{2}\right)} & , \quad 0<2 \alpha-w=\mathcal{O}(1) \\ F_{\alpha}[N(w-2 \alpha)+2 \alpha] & , \quad|2 \alpha-w|=\mathcal{O}(1 / N) \\ 1-e^{-N^{2} \phi_{+}(w)+\mathcal{O}(N)} & , \quad 0<w-2 \alpha=\mathcal{O}(1)\end{cases}
$$

1d Coulomb gas: large deviations of $x_{\max }$

$$
Q_{N}(w) \sim \begin{cases}e^{-N^{3} \Phi_{-}(w)+\mathcal{O}\left(N^{2}\right)} & , \quad 0<2 \alpha-w=\mathcal{O}(1) \\ F_{\alpha}[N(w-2 \alpha)+2 \alpha] & , \quad|2 \alpha-w|=\mathcal{O}(1 / N) \\ 1-e^{-N^{2} \phi_{+}(w)+\mathcal{O}(N)} & , \quad 0<w-2 \alpha=\mathcal{O}(1)\end{cases}
$$

$$
\Phi_{-}(w)=\left\{\begin{array}{lc}
\frac{(2 \alpha-w)^{3}}{24 \alpha}, & -2 \alpha \leq w \leq 2 \alpha \\
\frac{w^{2}}{2}+\frac{2}{3} \alpha^{2}, & w \leq-2 \alpha
\end{array} \Phi_{+}(w)=\frac{(w-2 \alpha)^{2}}{2}, \quad w>2 \alpha\right.
$$

\Longrightarrow Third order phase transition at $w=2 \alpha$
see also S. N. Majumdar, G. S. (2014)

1d Coulomb gas: large deviations of $x_{\max }$

$$
\begin{aligned}
& \left\{e^{-N^{3} \Phi_{-}(w)+\mathcal{O}\left(N^{2}\right)} \quad, \quad 0<2 \alpha-w=\mathcal{O}(1)\right. \\
& Q_{N}(w) \sim\left\{\begin{array}{l}
F_{\alpha}[N(w-2 \alpha)+2 \alpha] \quad, \quad|2 \alpha-w|=\mathcal{O}(1 / N)
\end{array}\right. \\
& 1-e^{-N^{2} \phi_{+}(w)+\mathcal{O}(N)} \quad, \quad 0<w-2 \alpha=\mathcal{O}(1) \\
& -\frac{\ln Q_{N}(w)}{N^{3}}{ }^{6}
\end{aligned}
$$

Sketch of the derivation $(1 / 3)$

$$
Q_{N}(w)=\mathbb{P}\left(x_{\max }<w\right)
$$

- Write it as a ratio of two partition functions $Q_{N}(w)=\frac{Z_{N}(w)}{Z_{N}(w \rightarrow \infty)}$
$Z_{N}(w)=\int_{-\infty}^{w} d x_{1} \cdots \int_{-\infty}^{w} d x_{N} \mathrm{e}^{-E\left(x_{1}, \cdots, x_{N}\right)} \quad$ (with $\left.\beta=1\right)$
where $E\left(x_{1}, \cdots, x_{N}\right)=\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right|$
- Trick: order the positions $x_{1}<x_{2}<\cdots<x_{N}$ Lenart '61, Baxter '63

$$
Z_{N}(w)=N!\int_{-\infty}^{w} d x_{1} \cdots \int_{-\infty}^{w} d x_{N} \mathrm{e}^{-E\left(x_{1}, \cdots, x_{N}\right)} \prod_{j=2}^{N} \Theta\left(x_{j}-x_{j-1}\right)
$$

and get rid of the absolute values in the interaction term

Sketch of the derivation (2/3)

$$
Z_{N}(w)=N!\int_{-\infty}^{w} d x_{1} \cdots \int_{-\infty}^{w} d x_{N} \mathrm{e}^{-E\left(x_{1}, \cdots, x_{N}\right)} \prod_{j=2}^{N} \Theta\left(x_{j}-x_{j-1}\right)
$$

- For the positions $x_{1}<x_{2}<\cdots<x_{N}$ the energy is

$$
\begin{aligned}
E\left(x_{1}, \cdots, x_{N}\right) & =\frac{N^{2}}{2} \sum_{i=1}^{N} x_{i}^{2}-\alpha N \sum_{i \neq j}\left|x_{i}-x_{j}\right| \\
& =\frac{N^{2}}{2} \sum_{i=1}^{N} \underbrace{\left(x_{i}-\frac{2 \alpha}{N}(2 i-N-1)\right)^{2}}_{\epsilon_{i}}+C_{N}(\alpha) \\
\text { variable } x_{i} & \longrightarrow \epsilon_{i}
\end{aligned}
$$

- Change of variable $x_{i} \longrightarrow \epsilon_{i}$

$$
\begin{aligned}
Z_{N}(w) & =N!D_{\alpha}\left(N\left(w-\frac{2 \alpha}{N}(N-1)\right), N\right) \\
D_{\alpha}(x, N) & =\int_{-\infty}^{x} d \epsilon_{N} \int_{-\infty}^{\epsilon_{N}+4 \alpha} d \epsilon_{N-1} \cdots \int_{-\infty}^{\epsilon_{2}+4 \alpha} d \epsilon_{1} \mathrm{e}^{-\frac{1}{2} \sum_{i=1}^{N} \epsilon_{i}^{2}}
\end{aligned}
$$

Sketch of the derivation $(3 / 3)$

$$
\begin{gathered}
Q_{N}(w) \equiv F_{\alpha}(x, N)=\frac{D_{\alpha}(x, N)}{D_{\alpha}(\infty, N)} \quad, \quad x=N\left(w-\frac{2 \alpha}{N}(N-1)\right) \\
D_{\alpha}(x, N)=\int_{-\infty}^{x} d \epsilon_{N} \int_{-\infty}^{\epsilon_{N}+4 \alpha} d \epsilon_{N-1} \ldots \int_{-\infty}^{\epsilon_{2}+4 \alpha} d \epsilon_{1} \mathrm{e}^{-\frac{1}{2} \sum_{i=1}^{N} \epsilon_{i}^{2}}
\end{gathered}
$$

- Recursion relation

$$
\frac{d F_{\alpha}(x, N)}{d x}=\frac{D_{\alpha}(\infty, N-1)}{D_{\alpha}(\infty, N)} \mathrm{e}^{-\frac{x^{2}}{2}} F_{\alpha}(x+4 \alpha, N-1)
$$

where $D_{\alpha}(\infty, N)$ is the partition function of a short-range interacting particle system: its free energy is extensive

$$
D_{\alpha}(\infty, N) \sim[A(\alpha)]^{-N}
$$

1d Coulomb gas: typical fluctuations of $x_{\max }$

$$
Q_{N}(w)=\mathbb{P}\left(x_{\max }<w\right)
$$

- Limiting form for large N, with $N(w-2 \alpha)=z=\mathcal{O}(1)$

$$
Q_{N}(w) \underset{N \rightarrow \infty}{\longrightarrow} F_{\alpha}(z+2 \alpha)
$$

A. Dhar et al. (2017), (2018)
eigenvalue
where

$$
\frac{d F_{\alpha}(x)}{d x}=A(\alpha) e^{-x^{2} / 2} F_{\alpha}(x+4 \alpha)
$$

with boundary $\lim _{x \rightarrow-\infty} F_{\alpha}(x)=0$ conditions:

$$
\lim _{x \rightarrow+\infty} F_{\alpha}(x)=1 \quad \text { and } \quad F_{\alpha}(x) \geq 0, \forall x
$$

More on the fluctuations at the edge: gap statistics

$$
P_{\text {gap }, \text { edge }}(g, N) \sim \begin{cases}N h_{\alpha}(N g) & g=\mathcal{O}(1 / N) \\ \mathrm{e}^{-N^{2} \Psi_{\text {edge }}(g)} & , \quad g=\mathcal{O}(1)\end{cases}
$$

A. Dhar et al. (2017), (2018)

More on the fluctuations at the edge: gap statistics

$$
P_{\text {gap }, \text { edge }}(g, N) \sim \begin{cases}N h_{\alpha}(N g) & , \quad g=\mathcal{O}(1 / N) \\ \mathrm{e}^{-N^{2} \Psi_{\text {edge }}(g)} & , \quad g=\mathcal{O}(1)\end{cases}
$$

- Typical fluctuations $g=\mathcal{O}(1 / N)$

$$
h_{\alpha}(z)=A(\alpha) \int_{-\infty}^{\infty} d y(y+z-4 \alpha) \mathrm{e}^{-\frac{1}{2}(y+z-4 \alpha)^{2}} F_{\alpha}(y), z \geq 0
$$

$$
\text { where } \quad \frac{d F_{\alpha}(x)}{d x}=A(\alpha) e^{-x^{2} / 2} F_{\alpha}(x+4 \alpha)
$$

More on the fluctuations at the edge: gap statistics

$$
P_{\text {gap }, \text { edge }}(g, N) \sim \begin{cases}N h_{\alpha}(N g) & , \quad g=\mathcal{O}(1 / N) \\ \mathrm{e}^{-N^{2} \Psi_{\text {cdge }}(g)} & , \quad g=\mathcal{O}(1)\end{cases}
$$

- Typical fluctuations : $g=\mathcal{O}(1 / N)$

More on the fluctuations at the edge: gap statistics

$$
P_{\text {gap }, \text { edge }}(g, N) \sim \begin{cases}N h_{\alpha}(N g) & , \quad g=\mathcal{O}(1 / N) \\ \mathrm{e}^{-N^{2} \Psi_{\text {edge }}(g)} & , \quad g=\mathcal{O}(1)\end{cases}
$$

- Atypical/large fluctuations : $g=\mathcal{O}(1)$

$$
\Psi_{\text {edge }}(g)=\frac{g^{2}}{2}
$$

i.e., the prolongation of the tail of $h_{\alpha}(z)$

Local fluctuations in the bulk of the one-dimensional Coulomb gas

- A. Flack, S. N. Majumdar, G. S., J. Stat. Mech. (2022)

Gap statistics in the bulk

$$
x_{1}<x_{2}<\cdots<x_{N}
$$

- Gap in the bulk: $g_{i}=x_{i+1}-x_{i}$ with $i=c N, 0<c<1$
- In the bulk, the statistics of g_{i} is independent of i
- Average value: $\left\langle g_{i}\right\rangle \sim \frac{4 \alpha}{N}$

Gap statistics in the bulk

$$
P_{\text {gap }, \text { bulk }}(g, N) \sim \begin{cases}N H_{\alpha}(g N), & g \sim \mathcal{O}(1 / N) \\ e^{-N^{3} \psi_{\text {bulk }}(g)}, & g \sim \mathcal{O}(1)\end{cases}
$$

A. Flack, S. N. Majumdar, G. S., (2022)

Gap statistics in the bulk

$$
P_{\text {gap. bulk }}(g, N) \sim \begin{cases}N H_{\alpha}(g N), & g \sim \mathcal{O}(1 / N), \\ e^{-N^{3} \psi_{\text {bulk }}(g)}, & g \sim \mathcal{O}(1),\end{cases}
$$

- Typical fluctuations : $g=\mathcal{O}(1 / N)$

$$
H_{\alpha}(z)=B(\alpha) \int_{-\infty}^{\infty} d y F_{\alpha}(y+4 \alpha) F_{\alpha}(8 \alpha-y-z) e^{-y^{2} / 2-(y+z-4 \alpha)^{2} / 2}
$$

$$
\text { where } \quad \frac{d F_{\alpha}(x)}{d x}=A(\alpha) e^{-x^{2} / 2} F_{\alpha}(x+4 \alpha)
$$

Gap statistics in the bulk

$$
P_{\text {gap, bulk }}(g, N) \sim \begin{cases}N H_{\alpha}(g N), & g \sim \mathcal{O}(1 / N), \\ e^{-N^{3} \psi_{\text {bulk }}(g)}, & g \sim \mathcal{O}(1),\end{cases}
$$

- Typical fluctuations : $g=\mathcal{O}(1 / N)$

Gap statistics in the bulk

$$
P_{\text {gap, bulk }}(g, N) \sim \begin{cases}N H_{\alpha}(g N), & g \sim \mathcal{O}(1 / N), \\ e^{-N^{3} \psi_{\text {bulk }}(g)}, & g \sim \mathcal{O}(1),\end{cases}
$$

- Atypical/large fluctuations : $g=\mathcal{O}(1)$

$$
\psi_{\mathrm{bulk}}(g)=\frac{g^{3}}{96 \alpha}
$$

i.e., the prolongation of the tail of $H_{\alpha}(z)$

Typical gap fluctuations: bulk vs edge

Conclusion and perspectives

- Exact extreme statistics of one-dimensional Coulomb gas
- Typical fluctuations are NOT given by Tracy-Widom distributions
- Gap statistics: different behaviors in the bulk and at the edge

D In the bulk, the distribution is NOT given by the Wigner surmise (i.e., corresponding to $N=2$ as in Gaussian β ensembles) see also S. Santra et al. PRL 2022 for Riesz gas

Q Q: how to interpolate between these two regimes?

- Exact results for the full counting statistics (i.e. the number of particles in $[-L,+L]$) or for the index: strong hyperuniformity

