

On the sharp constant in the Lieb–Oxford inequality

Robert Seiringer IST Austria

Based on joint work with Mathieu Lewin and Elliott Lieb

Coulomb gases and universality

Paris, December 5–9, 2022

CLASSICAL COULOMB SYSTEMS

Statistical mechanics of N charged particles interacting via Coulomb forces. Coulomb energy

$$\mathcal{E}(\mathbb{P}) = \int_{\mathbb{R}^{3N}} \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} d\mathbb{P}(x_1, \dots, x_N)$$

(Classical) density functional theory: minimize over all (probability) distributions \mathbb{P} with given one-particle density ϱ :

$$\mathcal{F}(\varrho) = \min_{\mathbb{P}, \ \varrho_{\mathbb{P}} = \varrho} \mathcal{E}(\mathbb{P})$$

where

$$\varrho_{\mathbb{P}}(x) = \sum_{i=1}^{N} \int_{\mathbb{R}^{3(N-1)}} d\mathbb{P}(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_N)$$

Of particular interest is the difference to the direct (uncorrelated) Coulomb energy,

$$\mathcal{I}(\varrho) = \mathcal{F}(\varrho) - \frac{1}{2} \int_{\mathbb{R}^6} \frac{\varrho(x)\varrho(y)}{|x-y|} dx \, dy$$

LIEB-OXFORD INEQUALITY

The Lieb–Oxford inequality gives a universal lower bound on \mathcal{I} : THEOREM. For all (non-negative) $\varrho \in L^1(\mathbb{R}^3) \cap L^{4/3}(\mathbb{R}^3)$

$$\mathcal{I}(\varrho) \ge -C_{\rm LO} \int_{\mathbb{R}^3} \varrho(x)^{4/3} dx$$

History:

- [Lieb 1979]: $0.93 \le C_{\rm LO} \le 8.52$
- [Lieb–Oxford 1980]: $1.23 \le C_{\rm LO} \le 1.68$
- [Chan–Handy 1999]: $C_{\rm LO} \leq 1.64$
- [Lewin–Lieb–S. 2019, 22]: $1.44 \le C_{\rm LO} \le 1.58$

The value of C_{LO} is of **practical significance** and used as a constraint in approximate density functionals.

Proof of the LO Inequality (Upper Bound on C_{LO})

For general charge distributions μ and $\nu,$ let

$$D(\mu,\nu) = \frac{1}{2} \int \frac{d\mu(x)d\nu(y)}{|x-y|}$$

If μ_x and ν_y are spherically symmetric around x and y, respectively, **Newton's theorem** implies that

$$\frac{1}{|x-y|} \ge 2D(\mu_x, \nu_y)$$

Given $\mathbb P$ we choose for fixed spherical μ

$$\mu_x(y) = \varrho_{\mathbb{P}}(x)\mu(\varrho_{\mathbb{P}}(x)^{1/3}(y-x))$$

Positivity of D thus gives **Onsager's Lemma**

$$\sum_{i < j} \frac{1}{|x_i - x_j|} \ge -D(\eta, \eta) + 2\sum_{i=1}^N D(\mu_{x_i}, \eta) - \sum_{i=1}^N \varrho_{\mathbb{P}}(x_i)^{1/3} D(\mu, \mu)$$

Proof of the LO Inequality, part 2

We choose

$$\eta(x) = \int \varrho_{\mathbb{P}}(y) d\nu_x(y)$$

and obtain

$$\mathcal{I}(\varrho) \ge -\int_{\mathbb{R}^6} \varrho(x)\varrho(y) \left(D(\nu_x,\nu_y) + D(\delta_x,\delta_y) - 2D(\mu_x,\nu_y) \right) dxdy - D(\mu,\mu) \int \varrho^{4/3} dx dy$$

The first term can be written as

$$\frac{1}{2} \int_{\mathbb{R}^6} \frac{\Psi_{\mu\nu}(|x-y|\varrho(x)^{1/3}, |x-y|\varrho(y)^{1/3})}{|x-y|^7} dx dy$$

with $\Psi_{\mu\nu} = \Phi_{\mu\nu} + \Phi_{\nu\mu} - \Phi_{\nu\nu}$ and

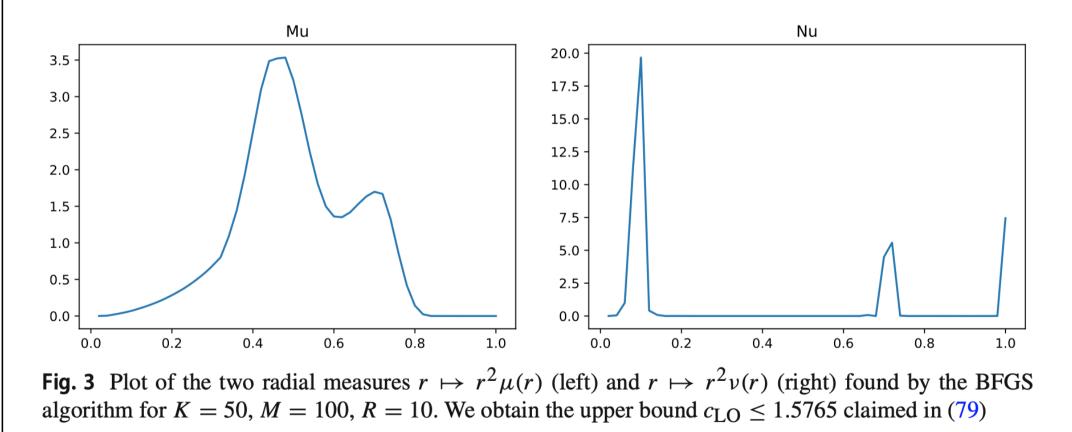
$$\Phi_{\mu\nu}(a,b) = a^3 b^3 \left(1 - 2D(\mu_{0,a},\nu_{e_1,b})\right) \quad , \quad \mu_{x,a} = a^3 \mu(a(\cdot - x))$$

Now if we can find an f such that $\Psi_{\mu\nu}(a,b) \leq f(a) + f(b)$ we obtain Lieb-Oxford with

PROOF OF THE LO INEQUALITY, PART 3

$$C_{\rm LO} \le \int_{\mathbb{R}^3} \frac{f(y)}{|y|^7} dy + D(\mu, \mu)$$

We have numerically optimized this bound over μ and ν , yielding $C_{\rm LO} \leq 1.58.$



The Uniform Electron Gas

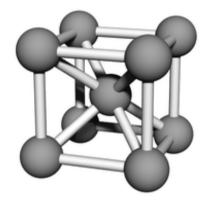
One can show that the limit $e_{\text{UEG}} = \lim_{\ell \to \infty} |\ell \Omega|^{-1} \mathcal{I}(\mathbb{1}_{\ell \Omega})$ exists and is independent of Ω . Clearly $C_{\text{LO}} \ge -e_{\text{UEG}}$.

It is claimed in the physics and chemistry literature that

 $e_{\rm UEG} = \zeta_{\rm BCC}(1) \approx -1.4442$

where $\zeta_{\mathcal{L}}$ denotes the **Epstein Zeta Function**

$$\zeta_{\mathcal{L}}(s) = \frac{1}{2} \sum_{x \in \mathcal{L} \setminus \{0\}} \frac{1}{|x|^s} \quad \text{for } s > 3$$



This emerges from the picture of a **Wigner crystal** in a uniformly charged background ("jellium"):

$$\min_{x_1,\dots,x_N} \left\{ \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} - \sum_{i=1}^N \int_\Omega \frac{1}{|x_i - y|} dy + \frac{1}{2} \int_{\Omega \times \Omega} \frac{1}{|x - y|} dx \, dy \right\}$$

A FLOATING CRYSTAL

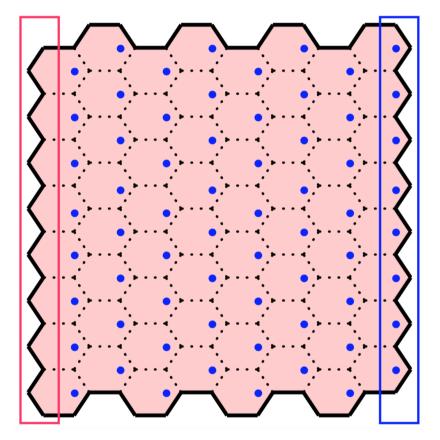
To obtain a **uniform density**, one can average the crystal over a unit cell:

This does **not** work, however!

Charge fluctuations at the boundary lead to a macroscopic energy shift

$$\zeta_{\mathcal{L}}(1) + \frac{2\pi}{3} \int_{Q} |x|^2 dx$$

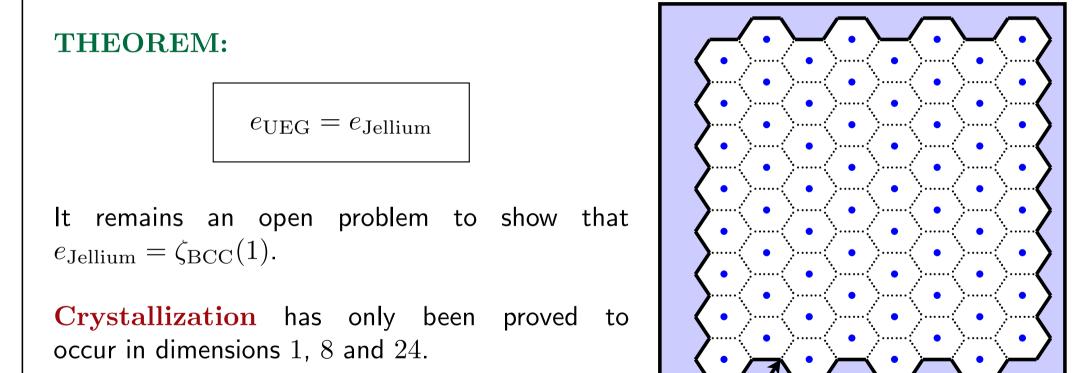
where Q is the unit cell of \mathcal{L} . [Lewin, Lieb, 2015]



Hence it remains unclear whether $e_{\text{UEG}} = e_{\text{Jellium}}$ or $e_{\text{UEG}} > e_{\text{Jellium}}$.

FLOATING CRYSTAL WITH MELTED SURFACE

To avoid the boundary charge fluctuations, one can immerse the crystal in a **thin layer of fluid**, which fills the space close to the boundary. This leads to:



 $\Omega_N + \mathbf{a}$

SUMMARY AND OPEN PROBLEMS

• We investigate the value of the sharp constant in the Lieb-Oxford Inequality

$$\int_{\mathbb{R}^{3N}} \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} d\mathbb{P}(x_1, \dots, x_N) \ge D(\varrho_{\mathbb{P}}, \varrho_{\mathbb{P}}) - C_{\mathrm{LO}} \int \varrho_{\mathbb{P}}^{4/3}$$

- With the aid of numerical optimization, we prove the upper bound $C_{\rm LO} \leq 1.58$
- Via the construction of a trial state for a **uniform electron gas**, we show that $C_{\text{LO}} \ge -e_{\text{UEG}} \ge 1.44$

Many open problems remain:

- What is the exact value of $C_{\rm LO}$? (It has been conjectured to equal $-\zeta_{\rm BCC}(1) \approx 1.4442$.)
- (Non-)existence of optimizers?
- Improved bounds in the quantum case?