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Classical Coulomb Systems

Statistical mechanics of N charged particles interacting via Coulomb forces. Coulomb
energy

E(P) =
Z

R3N

X

1i<jN

1

|xi � xj |
dP(x1, . . . , xN )

(Classical) density functional theory: minimize over all (probability) distributions P
with given one-particle density %:

F(%) = min
P, %P=%

E(P)
where

%P(x) =
NX

i=1

Z

R3(N�1)

dP(x1, . . . , xi�1, x, xi+1, . . . , xN )

Of particular interest is the di↵erence to the direct (uncorrelated) Coulomb energy,

I(%) = F(%)� 1

2

Z

R6

%(x)%(y)

|x� y| dx dy
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Lieb–Oxford Inequality

The Lieb–Oxford inequality gives a universal lower bound on I:

THEOREM. For all (non-negative) % 2 L1(R3) \ L4/3(R3)

I(%) � �CLO

Z

R3

%(x)4/3dx

History:

• [Lieb 1979]: 0.93  CLO  8.52

• [Lieb–Oxford 1980]: 1.23  CLO  1.68

• [Chan–Handy 1999]: CLO  1.64

• [Lewin–Lieb–S. 2019, 22]: 1.44  CLO  1.58

The value of CLO is of practical significance and used as a constraint in approximate
density functionals.
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Proof of the LO Inequality (Upper Bound on CLO)

For general charge distributions µ and ⌫, let

D(µ, ⌫) =
1

2

Z
dµ(x)d⌫(y)

|x� y|

If µx and ⌫y are spherically symmetric around x and y, respectively, Newton’s theorem
implies that

1

|x� y| � 2D(µx, ⌫y)

Given P we choose for fixed spherical µ

µx(y) = %P(x)µ(%P(x)
1/3(y � x))

Positivity of D thus gives Onsager’s Lemma

X

i<j

1

|xi � xj |
� �D(⌘, ⌘) + 2

NX

i=1

D(µxi , ⌘)�
NX

i=1

%P(xi)
1/3D(µ, µ)
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Proof of the LO Inequality, part 2

We choose

⌘(x) =

Z
%P(y)d⌫x(y)

and obtain

I(%) � �
Z

R6

%(x)%(y) (D(⌫x, ⌫y) +D(�x, �y)� 2D(µx, ⌫y)) dxdy �D(µ, µ)

Z
%4/3

The first term can be written as

1

2

Z

R6

 µ⌫(|x� y|%(x)1/3, |x� y|%(y)1/3)
|x� y|7 dxdy

with  µ⌫ = �µ⌫ + �⌫µ � �⌫⌫ and

�µ⌫(a, b) = a3b3 (1� 2D(µ0,a, ⌫e1,b)) , µx,a = a3µ(a(·� x))

Now if we can find an f such that  µ⌫(a, b)  f(a)+f(b) we obtain Lieb–Oxford with
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Proof of the LO Inequality, part 3

CLO 
Z

R3

f(y)

|y|7 dy +D(µ, µ)

We have numerically optimized this bound over µ and ⌫, yielding CLO  1.58.
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The Uniform Electron Gas

One can show that the limit eUEG = lim`!1 |`⌦|�1I(1`⌦) exists and is independent of
⌦. Clearly CLO � �eUEG.

It is claimed in the physics and chemistry literature that

eUEG = ⇣BCC(1) ⇡ �1.4442

where ⇣L denotes the Epstein Zeta Function

⇣L(s) =
1

2

X

x2L\{0}

1

|x|s for s > 3

This emerges from the picture of a Wigner crystal in a uniformly charged background
(“jellium”):

min
x1,...,xN

8
<

:
X

1i<jN

1

|xi � xj |
�

NX

i=1

Z

⌦

1

|xi � y|dy +
1

2

Z

⌦⇥⌦

1

|x� y|dx dy

9
=

;
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A Floating Crystal

To obtain a uniform density, one can average the crystal over a unit cell:

This does not work, however!

Charge fluctuations at the boundary lead to
a macroscopic energy shift

⇣L(1) +
2⇡

3

Z

Q
|x|2dx

where Q is the unit cell of L. [Lewin, Lieb, 2015]

Hence it remains unclear whether eUEG = eJellium or eUEG > eJellium.
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Floating Crystal with Melted Surface

To avoid the boundary charge fluctuations, one can immerse the crystal in a thin layer
of fluid, which fills the space close to the boundary. This leads to:

THEOREM:

eUEG = eJellium

It remains an open problem to show that
eJellium = ⇣BCC(1).

Crystallization has only been proved to
occur in dimensions 1, 8 and 24.

a
⌦N + aC
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Summary and Open Problems

• We investigate the value of the sharp constant in the Lieb–Oxford Inequality
Z

R3N

X

1i<jN

1

|xi � xj |
dP(x1, . . . , xN ) � D(%P, %P)� CLO

Z
%4/3P

• With the aid of numerical optimization, we prove the upper bound CLO  1.58

• Via the construction of a trial state for a uniform electron gas, we show that
CLO � �eUEG � 1.44

Many open problems remain:

• What is the exact value of CLO? (It has been conjectured to equal �⇣BCC(1) ⇡
1.4442.)

• (Non-)existence of optimizers?

• Improved bounds in the quantum case?
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