Edge behavior in the 2d and 4d Quantum Hall effect

Jean-Marie Stéphan

Camille Jordan Institute, University of Lyon 1 & CNRS, France

Coulomb gases and universality, Jussieu 2022

[Estienne, Oblak & JMS, Scipost Physics, 2021] [Cardoso, JMS & Abanov, Journal of Physics A, 2021]

Outline

1 Simple 2d Integer Quantum Hall wavefunctions

2 Simple 4d Integer Quantum Hall wavefunctions

3 Edge density for Laughlin/ β -ensembles

 Simple 2d Integer Quantum Hall wavefunctions
 Simple 4d Integer Quantum Hall wavefunctions
 Edge density for Laughlin/β-ensem

 ●000000
 000000000
 00000000
 00000000

Hamiltonian in a magnetic field + trapping potential

$$H = \frac{1}{2} \left(\mathbf{p} - \mathbf{A} \right)^2 + \frac{k}{2} (x^2 + y^2)$$

with

$$\mathbf{p} = -\mathrm{i}\hbar \left(\begin{array}{c} \partial_x \\ \partial_y \end{array}
ight) \qquad \mathbf{A} = \frac{B}{2} \left(\begin{array}{c} -y \\ x \end{array}
ight)$$

naturally leads to single particle wave functions

$$\phi_m(z) = \frac{z^m}{\sqrt{\pi m!}} e^{-|z^2|/2}$$

and ground state many-body wavefunction

$$\Psi(z_1,\ldots,z_N) = \det_{1 \le j,m \le N} \phi_{m-1}(z_j)$$

$$|\Psi(z_1,\ldots,z_N)|^2 = \prod_{j < k} |z_j - z_k|^{\Gamma} e^{-\sum_{j=1}^N |z_j|^2}$$

where $\Gamma = 2$. Other values of Γ : Laughlin state, log gas.

Well-known free fermions model, everything determined from the two-point function (or correlation kernel):

$$K_N(z, z') = \sum_{m=0}^{N-1} \phi_m^*(z) \phi_m(z')$$

=
$$\sum_{m=0}^{N-1} \frac{(z^* z')^m}{\pi m!} e^{-(|z|^2 + |z'|^2)/2}$$

Density profile for large N

 $K_N(z,z)$ is the density profile.

$$\lim_{N \to \infty} K_N(u\sqrt{N}, u\sqrt{N}) = \frac{1}{\pi}$$

for $u \in [0,1)$. Constant density in the bulk.

$$\lim_{N \to \infty} K_N(\sqrt{N} + x, \sqrt{N} + x) = \frac{\operatorname{erfc}(x\sqrt{2})}{2\pi}$$

Droplet is a disc with radius \sqrt{N} .

Density profile for large N

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

Simple 2d Integer Quantum Hall wavefunctions Simple 4d Integer Quantum Hall wavefunctions Edge density for Laughlin/β-ensem

For large N and $\theta \in (0, 2\pi)$ [Jancovici 1982]:

$$|K_N(\sqrt{N}, \sqrt{N}e^{\mathrm{i}\theta})| \sim rac{\mathrm{constant}}{\sqrt{N}\sinrac{ heta}{2}}$$

Ideas of droplet deformations: Electrostatics and conformal maps [Choquard, Piller & Rentsch 1986], symmetries [Cappelli, Trugenberger & Zemba, 1993], generalizations [Zabrodin & Wiegmann 2006], free field, proofs [Leblé & Serfaty 2018], [Bauerschmidt, Bourgade, Nikula & Yau 2019], [Ameur & Cronvall 2022], conformal field theory [Read & Rezayi 1998].

Weird for now interpretation: $\sin \frac{\theta}{2} = \sin t$, where t is the time it takes to travel counterclockwise at constant speed on the unit circle, from w = 1 to $w = e^{i\theta}$ ("circumnavigation" takes time π).

Origin of this term

• $|\phi_m(z)|$ maximal for $|z| = \sqrt{m}$. Decays fast away from \sqrt{m} .

• Edge asymptotics for each single particle wavefunction :

$$\phi_{N-p}(\sqrt{N}e^{i\theta}) \sim e^{iN\theta} \frac{e^{-ip\theta - p^2/(4N)}}{(2N\pi^3)^{1/4}}$$

• Finally perform the sum:

$$\sum_{p=1}^{N} \phi_{N-p}(\sqrt{N})\phi_{N-p}(\sqrt{N}e^{\mathrm{i}\theta})$$

Simple 2d Integer Quantum Hall wavefunctions	Simple 4d Integer Quantum Hall wavefunctions	Edge density for Laughlin/ β -ensem
	••••••	

4d Quantum Hall effect

 $(x, y, u, v) \in \mathbb{R}^4$. Simplest generalization of the previous model:

$$H = (\mathbf{p} - \mathbf{A})^2 + \frac{k}{2}(x^2 + y^2) + \frac{k'}{2}(u^2 + v^2)$$

with vector potential

$$\mathbf{A} = \frac{B}{2} \begin{pmatrix} -y \\ x \\ -v \\ u \end{pmatrix}$$

leads to (z = x + iy, w = u + iv up to some units)

$$\phi_{m,n}(z,w) = \frac{z^m w^n}{\sqrt{\pi^2 m! n!}} e^{-(|z|^2 + |w|^2)/2}$$

with energies $\epsilon_{m,n}=\hbar(\omega m+\omega' n)$ with $\omega=\frac{k}{B}$, $\omega'=\frac{k'}{B}$

Generalizations of QHE to 4d predict anisotropic edge modes

[Zhang & Hu, Science 2001] [Karabali & Nair, Nucl. Phys. B 2002] [Helvang & Polschinski, CRP 2003]

. . .

Possible experimental realisations by engineering synthetic dimensions (quasicrystals, internal states, photonics,...) [Kraus, Ringel & Zilberberg, PRL 2013] [Price, Zilberberg, Ozawa, Carusotto & Goldman, PRL 2015] [Lohse, Schweizer, Price, Zilberberg & Bloch Nature 2018] [Bouhiron *et al.*, arXiv:2210.06322] Single particle state (m, n) has energy $\varepsilon_{n,m} = \hbar(\omega n + \omega' n)$, where $\omega = k/B$, $\omega' = k'/B$.

Correlation kernel

$$K_N(z, w|z', w') = \sum_{m+\Delta n < N} \frac{(z^* z')^m (w^* w')^n}{\pi^2 m! n!} e^{-(|z|^2 + |w|^2 + |z'|^2 + |w'^2|)/2}$$

$$\Delta = \frac{\omega'}{\omega}$$

Main results (I)

Droplet: squashed 4-Ball $|z|^2 + \Delta |w|^2 \leq N$. Edge parametrization

$$z = \sqrt{N}e^{i\alpha}\cos\frac{\theta}{2}$$
 , $w = \sqrt{N}e^{i\beta}\sin\frac{\theta}{2}$

Without loss of generality, another point at the edge parametrized by $z' = \sqrt{N} \cos \frac{\theta'}{2}$, $w' = \sqrt{N} \sin \frac{\theta'}{2}$.

Can show with this parametrization that

$$\lim_{N \to \infty} \sqrt{N} K_N(z, w | z', w') = 0$$

if $\theta \neq \theta'$, so edge modes necessarily live on the α, β torus.

Edge modes on the torus

 $\Delta = 1$

Edge modes on the torus

 $\Delta = 3/2$

Edge modes on the torus

 $\Delta = 5/3$

Edge modes on the torus

 $\Delta = 7/5$

Edge modes on the torus

 $\Delta = 41/29$

Simple 2d Integer Quantum Hall wavefunctions 000000 00 000 000 000 Edge density for Laughlin/β-ensem

Main results (II)

Set
$$\theta = \theta'$$
 and define $\mathcal{K}(\alpha, \beta) = \lim_{N \to \infty} |\sqrt{N}K_N(z, w|z', w')|$

•
$$\mathcal{K}(\alpha,\beta) > 0$$
 iff $e^{i\Delta\alpha} = e^{i\beta}$.

• If
$$e^{\mathrm{i}\Delta\alpha}=e^{\mathrm{i}\beta}$$
 and $\Delta\in\mathbb{Q}$, then

$$\mathcal{K}(\alpha,\beta) = \frac{\mathrm{const}}{\sin t}$$

Similar to before, t is the time it takes to reach (z, w) from (z', w') while traveling at constant speed on the torus.

• If $\Delta \notin \mathbb{Q}$ $\mathcal{K}(\alpha,\beta) = \frac{\mathrm{const}'}{t}$

Main trick in the derivation

Rational case: same strategy as in 2d. With $\Delta = p/q$, just use

$$\sum_{m+\Delta n < N} g(m,n) = \frac{1}{pq} \sum_{m'+n' < qN} \sum_{\mu=1}^{q} \sum_{\nu=1}^{p} e^{i2\pi \left[\frac{\mu m'}{q} + \frac{\nu n'}{p}\right]} g(m'/q, n'/p)$$

Irrational case: not so easy.

1d slices at $\beta = 0$

 $\Delta = 17/12$

1d slices at $\beta = 0$

 $\Delta = \sqrt{2}$

1d slices at $\beta = 0$

 $\Delta = \sqrt{2}$

Edge density profile in the Laughlin state/2d log gas

$$|\Psi(z_1,\ldots,z_N)|^2 = \frac{1}{Z_N(\Gamma)} \prod_{j < k} |z_j - z_k|^{\Gamma} e^{-\sum_{j=1}^N |z_j|^2}$$

for larger values of Γ .

1024 particles, $\Gamma = 80$, 1 snapshots

1024 particles, $\Gamma = 80$, 500 superimposed snapshots

• Oscillations of the density close to the edge can be understood perturbatively around $\Gamma - 2$. [Jancovici 1981], [Can, Forrester, Tellez & Wiegmann 2014]

Oscillations become larger as Γ is increased:

Assume crystalization to a triangular lattice for $\beta \to \infty$. [Tkachenko 1966]

Phase transition observed in numerical simulations at $\Gamma\simeq 140.$ [Caillol, Levesque, Weis, Hansen 1981]

What we observe numerically:

- For $\Gamma < 140$ exponential decay of oscillations with distance to the edge. The peaks match the triangular lattice structure. Freezing at the edge, with crystal melted into the bulk.
- For $\Gamma>140$ oscillations appear to decay much slower.

N = 2048 particles

The edge of a quantum Hall droplet is interesting.

Thank you!