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The quantum Hall effect(s)

The integer quantum Hall effect (IQHE) is a quantum phenomenon

in strong magnetic fields. The Hall conductance of 2D electrons

(fermions) shows precisely quantized plateaus when the filling factor

(particle density/magnetic field strength) is an integer multiple of e2

h .

(von Klitzing 1980; Nobel prize 1985)

In the fractional quantum Hall effect (FQHE) the plateaus occur at

fractional multiples of e2

h (Störmer, Tsu; Laughlin 1982-83; Nobel

prizes1998, and 2016 to Haldane.)

A bosonic FQHE is theoretically possible in rapidly rotating cold atomic

gases, or in synthetic gauge fields.

Understanding the FQHE has been a major research topic in

condensed matter physics since 40 years.
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The FQHE. Rxy = Vy/Ix;Rxx = Vx/Ix
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The basic Hamiltonian

Starting point: Hamiltonian for N (spinless, or spin polarized) fermions

(electrons, charge −e) moving in 2D with a perpendicular magnetic

field:

HN =

N∑
i=1

[
H(i)

magn + V (ri)
]

+
∑
i<j

w(ri − rj)

The external potential V models trapping and impurities. The

interaction potential w is usually assumed to be repulsive Coulomb,

i.e.,

w(ri − rj) =
e2

|ri − rj |
The potential V includes then a background of opposite charge.

A strong magnetic field sets the dominant energy scale, ∼ B.
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The 1-particle magnetic Hamiltonian

The magnetic Hamiltonian is (in units so that ~ = 1, m = 1)

Hmagn =
1

2
(π2

x + π2
y)

where

π = (πx, πy) = p + eA

is the gauge invariant kinetic momentum with

p = −i~(∂x, ∂y)

the canonical momentum and (in the symmetric gauge)

A =
B

2
(−y, x).
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The 1-particle magnetic Hamiltonian (cont.)

The kinetic momentum components satisfy the canonical commutation
relations

[πx, πy] = i`−2
B

with the magnetic length

`B = (eB)−1/2.

In terms of the creation and annihilation operators

a† =
`B√

2
(−πy − iπx), a =

`B√
2

(−πy + iπx)

with [a, a†] = 1 one can write

Hmagn = 2`−2
B (a†a+ 1

2).
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The Landau levels

This is the Hamiltonian of a harmonic oscillator with eigenvalues

εn = (n+ 1
2)2eB, n = 0, 1, . . . ..

Every eigenvalue is infinitely degenerate. The degeneracy per unit

area is (2π`2B)−1 ∼ B.

The eigenspace with n = 0 is called the lowest Landau level, denoted

LLL. The n-the Landau level is denoted nLL.

The corresponding fermionic spaces for N electrons are denoted

LLL⊗aN and nLL⊗aN respectively.

The degeneracy can be parametrized by the angular momentum

operator r× p, or equivalently, by the eigenvalues of another harmonic

oscillator H ′magn, commuting with Hmagn, and associated with guiding

centers.
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Cyclotron motion and guiding centers

The Landau spectrum arises through the quantization of the cyclotron
motion around guiding centers. One arrives at this picture by writing
the gauge invariant position operator r as

r = R + R̃

with the guiding center part R and the Landau orbit (cyclotron) part

R̃ = `2Bn× π,

where n the unit normal vector to the plane.
Both R and R̃ are gauge invariant and and [R, R̃] = 0 while

[Rx, Ry] = −i`2B, [R̃x, R̃y] = i`2B.

(Noncommutative geometry!)
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The splitting of r
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The two oscillators

The creation and annihilation operators for the cyclotron oscillator

Hmagn are in terms of R̃

a† =
1√
2`B

(R̃x − iR̃y), a =
1√
2`B

(R̃x + iR̃y).

The Hamiltonian H ′magn for the guiding centers on the other hand is

H ′magn = 2`−2
B (b†b+ 1

2)

with

b† =
1√
2`B

(Rx + iRy), b =
1√
2`B

(Rx − iRy),

[b, b†] = 1 and [a#, b#] = 0.
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Complex notation

Choose units so that eB = 2, i.e., `B = 1/
√

2.

The two-dimensional configuration space R2 can be identified with the

complex plane C.

Defining complex coordinates and derivatives by

z = x+ iy, z̄ = x− iy, ∂z = 1
2(∂x − i∂y), ∂z̄ = 1

2(∂x + i∂y)

we can write

a† = 1
2 z̄ − ∂z, a = 1

2z + ∂z̄, b† = 1
2z − ∂z̄, b = 1

2 z̄ + ∂z

Recall that the a# are associated with the cyclotron oscillator R̃ and

raise or lower the LL index, while the b# are associated with the

guiding center oscillator R and leave each LL fixed.
Jakob Yngvason (Uni Vienna) Higher LL 11 / 28
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Eigenfuntions

The two sets of creation and annihilation operator generate the whole
1-particle Hilbert space L2(C,d2z) The gaussian wave function

ϕ0,0(z, z̄) :=
1√
π
e−|z|

2/2

is the common ground state for the commuting harmonic oscillators

H = 4
(
a†a+ 1

2

)
and H ′ := 4

(
b†b+ 1

2

)
.

The states

ϕn,m = (a∗)n(b∗)mϕ0,0

form a basis of common eigenfunctions with

Hϕn,m = 4
(
n+ 1

2

)
ϕn,m, H ′ϕn,m = 4

(
m+ 1

2

)
ϕn,m.
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Holomorphy

The functions ϕn,m with n fixed, m = 0, 1, . . . span the nth-Landau
level nLL. The lowest Landau level LLL is spanned by the
ϕ0,m ∼ zme−|z|

2/2; its wave functions have the form

ψ(z, z̄) = f(z)e−|z|
2/2

with holomorphic f .

Functions in nLL have the form

ψ(z, z̄) =

n∑
k=0

fk(z)z̄ke−|z|
2/2

with holomorphic fk(z) that are sums of derivatives of fn. Because of
the factors z̄k we see that in higher Landau levels the pre-factor to the
gaussian is partly holomorphic, partly anti-holomorphic.
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The Laughlin wave function

So far, only “free” 1-particle states have been discussed. The FQHE is,
however, a many body phenomenon and interactions are essential.

The Laughlin wave function (Laughlin 1983), is an ansatz for the
ground state of the many-body Hamiltonian in the N -particle lowest
Landau level LLL⊗aN to explain filling fractions 1/q in the FQHE, q ≥ 3

odd and small. It is defined by

Ψ
(q)
Lau = CN,`

∏
i<j

(zi − zj)qe−
∑N

i=1 |zi|2/2

Its “quasi-hole”,
∏

i(zi − η) and “quasi-particle”,
∏

i(∂zi − η̄) excitations
exhibit fractional charges ±1/q and fractional statistics.
By estimating the energies of these excitations Laughlin concluded
that for q ≤ 7 his wave function describes an incompressible fluid.

No mathematical proof has yet been given of this, however!
Jakob Yngvason (Uni Vienna) Higher LL 14 / 28
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Plasma analogy

Important properties can, however, be rigorously proved using
Laughlin’s plasma analogy. This is the interpretation of the N -particle
probablilty density |Ψ(q)

Lau|2 as a Boltzmann-Gibbs factor for a 2D
classical Coulomb gas in a neutralizing background:

NN |Ψ(q)
Lau(
√
N~z)|2 = ZN

−1 exp (−βHN (~z))

with β = N and the classical Hamiltonian function

HN (~z) =

N∑
j=1

|zj |2 +
2q

N

∑
1≤i<j≤N

log
1

|zi − zj |
.

Using this representation Laughlin concluded that for large N his wave
function describes a droplet of radius

√
qN and uniform density (qπ)−1,

except close to the edges. (Rigorous proof by Rougerie, Serfaty and
JY 2014.)
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Density bounds, rigidity

More generally we may consider perturbations of |Ψ(q)
Lau|2 of the kind

ΨF = Ψ
(q)
LauF (~z)

with a holomorphic function F . This amounts to adding a

plurisuperharmonic function

WN (~z) := − 2

N
log
∣∣∣F (√N ~z

)∣∣∣ .
to HN .

In 2018 Lieb, Rougerie and JY proved that the particle density of ΨF

(suitably averaged) cannot exceed Laughlin’s bound (πq)−1.

This important fact was called rigidity of the Laughlin state by LRY.

It is not the same as the (still unproved!) incompressibility, however.
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The unitary correspondence nLL↔ LLL

We now come to the main message of this lecture:
All results based on holomorphy it in the LLL have counterparts
in higher LL’s. In particular there are Laughlin states in all LL’s. The
reason is that all LL’s are unitarily equivalent in a natural way!
Consequently can always work with holomorphic wave functions in the
LLL, but the point to note is that particle densities, or equivalently,
interaction potentials may depend on the LL. For this reason a state
can be compressible in one LL while its counterpart in another LL is
incompressible.

Different roads to the correspondence nLL↔ LLL:
Coherent states for the guiding center oscillator
The formula exp(iq · r) = exp(iq ·R) exp(iq · R̃)

Use the creation and annihilation operators (a∗)n and an.
Each of the three roads sheds a different light on the correspondence,
but the last one is the simplest from a mathematical point of view.
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interaction potentials may depend on the LL. For this reason a state
can be compressible in one LL while its counterpart in another LL is
incompressible.

Different roads to the correspondence nLL↔ LLL:
Coherent states for the guiding center oscillator
The formula exp(iq · r) = exp(iq ·R) exp(iq · R̃)

Use the creation and annihilation operators (a∗)n and an.
Each of the three roads sheds a different light on the correspondence,
but the last one is the simplest from a mathematical point of view.
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A direct approach

The last mentioned approach is based on the unitary operators
Un : nLL→ LLL and their inverses U−1

n : LLL→ nLL defined by

Un = (n!)−1/2an � nLL, U−1
n = (n!)−1/2(a†)n � LLL.

Using the formulas a = 1
2z + ∂z̄, a† = 1

2 z̄ − ∂z, it follows that

If ψn ∈ nLL has wave function ψn(z, z̄) =
∑n

k=0 fk(z)z̄ke−|z|
2/2,

f0, . . . , fn holomorphic, then the wave function of ψ0 = Unψn ∈ LLL is

ψ0(z, z̄) =
√
n!fn(z)e−|z|

2/2,

with

fk(z) = (−1)n−k
(
n
k

)
∂n−kz fn(z).
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Comparison of `-particle densities in different LL’s

The main result on `-particle densities in higher Landau levels,

obtained by means of the formula

Un = (n!)−1/2an = (n!)−1/2(1
2z + ∂z̄)

n

and reshuffling of differentations, is:

Theorem

The `-particle densities of Ψn ∈ nLL⊗aN and Ψ0 = U⊗Nn Ψn ∈ LLL⊗aN

are connected by

ρ
(`)
Ψn

(r1, . . . , r`) =
∏̀
i=1

Ln

(
−1

4∆ri

)
ρ

(`)
Ψ0

(r1, . . . , r`)

where Ln(t) =
∑n

l=0

(
n
l

) (−t)l
l! is the n-th Laguerre polynomial.
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Corollaries

1. The local density of a perturbed Laughlin state in nLL⊗N ,

Ψn = F (b†1, . . . , b
†
N )
∏
i<j

(b†i − b
†
j)

qϕ⊗Nn,0

with holomorphic F satisfies for N →∞ the density upper bound

(qπ)−1 independently of n, when averaged by suitably regularized

characteristic functions on scales�
√
N .

(In addition full, “inert” lower levels contribute 1/π to the total

density each.)
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2. Potential energies of a state in nLL⊗aN can be evaluated using

the corresponding wave function in LLL⊗aN if the external

potential V (r) is replaced by the effective external potential

V (r)eff
n = Ln

(
−1

4∆r

)
V (r)

and the interaction potential w(r1, r2) by the effective interaction

potential

w(r1, r2)eff
n = Ln

(
−1

4∆r1

)
Ln

(
−1

4∆r2

)
w(r1, r2).
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Effective Coulomb
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The ν = 5/2 FQHE

A Quantum Hall state with a clear signature for filling factor ν = 5/2

was first observed in 1987. It arises from a half-filled LL with n = 1 on

top of two full LLL’s (n = 0) with opposite spin. This state is unusual

since the great majority of observed plateaus in the Quantum Hall

conductance correspond to filling factors with an odd denominator.

Moreover, there is no sign of a plateau in the Hall resistance at

ν = 1/2 for n = 0 alone.
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The ν = 5/2 FQHE (cont.)

The theoretical explanation of the ν = 5/2 FQHE is still a debated

subject but the transformation formula between Landau levels for the

Coulomb interaction should play an important role. Possibly the simple

picture based on the mapping nLL↔ LLL is not enough, however, due

to Landau level mixing.

Anyway, the observed ν = 5/2 state is theoretically very interesting

because proposed candidates for its wave function (Moore-Read

Pfaffian states and variants) offer the possibilty of nonabelian braid

statistics for its quasi-hole excitations.
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Pfaffian states

A Moore-Read state in the LLL for an even particle number N has the

form

ΨMR(z1, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)q
N∏
i=1

e−|zi|
2/2

with the Pfaffian

Pf

(
1

zi − zj

)
= A

{
1

z1 − z2
· · · 1

zN−1 − zN

}
.

Here A stands for antisymmetrization over all possible pairings of the

coordinates. It has filling fraction 1/q and is antisymmetric for even

values of q. It is also holomorphic because singular factors in the

Pfaffian are compensated by the factors (zi − zj)q.
The state can be “lifted” to nLL by the unitary maps (U−1

n )⊗N .
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Conclusions

QH states for many-body systems in arbitrary Landau levels can

be mapped unitarily onto states in the lowest Landau level.

The basis for this is the splitting of the classical (commutative)

position variables r into guiding centers and cyclotron variables.

The motion of the guiding centers is independent of the Landau

level. It is, however, decorated by the cyclotron motion which

depends on the level and modifies particle densities expressed in

the position variables.

Particle densities and interactions in higher Landau levels can be

studied in terms of suitably transformed densities and interactions

in the lowest Landau level.

The filling fraction ν = 5/2 is particularly interesting (possibility of

nonabelian braid statistics).
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